修改时间:2021-08-25 浏览次数:192 类型:二轮复习
如图所示,底座上A,B两点间的距离为90cm.低杠上点C到直线AB的距离CE的长为155cm,高杠上点D到直线AB的距离DF的长为234cm,已知低杠的支架AC与直线AB的夹角∠CAE为82.4°,高杠的支架BD与直线AB的夹角∠DBF为80.3°.求高、低杠间的水平距离CH的长.(结果精确到1cm,参考数据sin82.4°≈0.991,cos82.4°≈0.132,tan82.4°≈7.500,sin80.3°≈0.983,cos80.3°≈0.168,tan80.3°≈5.850)
课题 |
测量南山门最高点的高度 |
|||
实物图 |
||||
成员 |
组长:xxx 组员:xxx,xxx,xxx |
|||
测量工具 |
卷尺、测角仪…… |
|||
测量示意图 |
说明:AB表示南山门最高点到地面的竖直距离.测角仪的高度CD-EF-1.5m点C.F与点B在同一直线上,点C.F之间的距离可直接测将,且点A、B.C.D.E、F在同一平面内. |
|||
测量数据 |
第一次 |
第二次 |
平均值 |
|
35.95° |
36.05° |
36° |
||
45.09° |
44.91° |
45° |
||
79.58m |
79.62m |
79.6m |
||
…… |
…… |
|||
填空:CE与CG的数量关系是,直线CE与CG所夹的锐角的度数为.
将△ADE绕点A逆时针旋转,(1)中的结论是否仍然成立,若成立,请仅就图②所示情况给出证明,若不成立,请说明理由;
若AB=4,AD=3,将△ADE由图①位置绕点A逆时针旋转α(0°<α<180°),当△ACE是直角三角形时,请直接写出CG的值.
下面,我们通过折叠的方式折出一个 矩形,如图a所示.
操作1:将正方形ABEF沿过点A的直线折叠,使折叠后的点B落在对角线AE上的点G处,折痕为AH.
操作2:将FE沿过点G的直线折叠,使点F、点E分别落在边AF,BE上,折痕为CD.则四边形ABCD为 矩形.
①如图b,O是对角线AC的中点,若点N在边BC上,OM⊥ON,连接MN.求tan∠OMN的值;
②若AM=AD,点N在边BC上,当△DMN的周长最小时,求 的值;
③连接CM,作BR⊥CM,垂足为R.若AB=2 ,则DR的最小值= .
试题篮