试题 试卷
题型:证明题 题类:常考题 难易度:普通
如图,△ABC中,AB=AC,作以AB为直径的⊙O与边BC交于点D,过点D作⊙O的切线,分别交AC、AB的延长线于点E、F.
(1)求证:EF⊥AC;
(2)若BF=2,CE=1.2,求⊙O的半径.
求证:△ABC∽△POA.
【提出问题】如图所示.球员带球沿直线奔向球门 ,
探究:是否存在一个位置,使得射门角度最大.
【分析问题】因为线段长度不变,我们联想到圆中的弦和圆周角.
如图1,射线与相交,点M,点A,点N分别在圆外、圆上、圆内,连接 .
【解决问题】
试题篮