湖南省长沙市长郡梅溪湖中学2019-2020学年九年级上学期数学期末试卷

修改时间:2024-07-31 浏览次数:189 类型:期末考试 编辑

选择试卷全部试题 *点击此按钮,可全选试卷全部试题,进行试卷编辑

一、单选题

  • 1. ﹣ 的绝对值为(   )
    A . ﹣2 B . C . D . 1
  • 2. PM2.5是大气压中直径小于或等于0.0000025m的颗粒物,将0.0000025用科学记数法表示为(  )

    A . 0.25×10﹣5 B . 0.25×10﹣6 C . 2.5×10﹣5 D . 2.5×10﹣6
  • 3. 使分式 有意义的x的取值范是(    )
    A . x≠3 B . x=3 C . x≠0 D . x=0
  • 4. 在下列各式中,运算结果正确的是(  )
    A . x2+x2x4 B . x﹣2x=﹣x C . x2x3x6 D . x﹣1)2x2﹣1
  • 5. 如图,已知AB∥CD,AD=CD,∠1=40°,则∠2的度数为(   )

    A . 60° B . 65° C . 70° D . 75°
  • 6. 如图,△ABC是⊙O的内接三角形,∠AOB=110°,则∠ACB的度数为(  )

    A . 35° B . 55° C . 60° D . 70°
  • 7. 如图,在△ABC中,AB的垂直平分线交BC于D,AC的中垂线交BC于E,∠DAE=20°,则∠BAC的度数为(   )

    A . 70° B . 80° C . 90° D . 100°
  • 8. 下面哪个图形不是正方体的平面展开图(  )
    A . B . C . D .
  • 9. 在一个不透明的口袋中,装有若干个红球和4个黄球,它们除颜色外没有任何区别,摇匀后从中随机摸出一个球,记下颜色后再放回口袋中,通过大量重复摸球实验发现,摸到黄球的概率是0.2,则估计盒子中大约有红球(  )

    A . 12个 B . 16个 C . 20个 D . 25个
  • 10. 我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何.”设鸡x只,兔y只,可列方程组为(   )
    A . B . C . D .
  • 11. 如图,平行于x轴的直线与函数y= (k1>0,x>0),y= (k2>0,x>0)的图象分别相交于A,B两点,点A在点B的右侧,C为x轴上的一个动点,若△ABC的面积为6,则k1﹣k2的值为(  )

    A . 12 B . ﹣12 C . 6 D . ﹣6
  • 12. 已知抛物线y=x2+(2a+1)x+a2﹣a,则抛物线的顶点不可能在(   )
    A . 第一象限 B . 第二象限 C . 第三象限 D . 第四象限

二、填空题

  • 13. 不等式 >4﹣x的解集为
  • 14. 已知在平面直角坐标系中,点 在第二象限,且到 轴的距离为3,到 轴的距离为4,则点 的坐标为
  • 15. 高为8米的旗杆在水平地面上的影子长为6米,同一时刻测得附近一个建筑物的影子长30米,则此建筑物的高度为米.
  • 16. 分解因式:
  • 17. 如图,直线yax+b过点A(0,2)和点B(﹣3,0),则方程ax+b=0的解是

  • 18. 如图, 是锐角 的外接圆, 的切线,切点为F, ,连结 于E, 的平分线 于D,连结 .下列结论:① 平分 ;②连接 ,点F为 的外心;③ ;④若点M,N分别是 上的动点,则 的最小值是 .其中一定正确的是(把你认为正确结论的序号都填上).

三、解答题

  • 20. 先化简,再求值: ,其中﹣2≤a≤2,从中选一个你喜欢的整数代入求值.
  • 21. 为了解某校九年级学生立定跳远水平,随机抽取该年级50名学生进行测试,并把测试成绩(单位:m)绘制成不完整的频数分布表和频数分布直方图.

    学生立定跳远测试成绩的频数分布表

    分组

    频数

    1.2≤x<1.6

    a

    1.6≤x<2.0

    12

    2.0≤x<2.4

    b

    2.4≤x<2.8

    10

    请根据图表中所提供的信息,完成下列问题:

    (1) 表中 ,样本成绩的中位数落在证明见解析范围内;
    (2) 请把频数分布直方图补充完整;
    (3) 该校九年级共有1000名学生,估计该年级学生立定跳远成绩在 范围内的学生有多少人?
  • 22. 如图,在四边形 中, 交于点E,点E是 的中点,延长 到点F,使 ,连接

    (1) 求证:四边形 是平行四边形;
    (2) 若 ,求四边形 的面积.
  • 23. A、B两地间的距离为15千米,甲从A地出发步行前往B地,20分钟后,乙从 B地出发骑车前往A地,且乙骑车比甲步行每小时多走10千米.乙到达A地后停留40分钟,然后骑车按原路原速返回,结果甲、乙两人同时到达B地.求甲从A地到B地步行所用的时间.
  • 24. 如图,四边形ABCD的外接圆为⊙O,AD是⊙O的直径,过点B作⊙O的切线,交DA的延长线于点E,连接BD,且∠E=∠DBC.

    (1) 求证:DB平分∠ADC;
    (2) 若CD=9,tan∠ABE= ,求⊙O的半径.
  • 25. 如图1,抛物线 的顶点为点 ,与 轴的负半轴交于点D,直线 交抛物线W于另一点C,点B的坐标为

        

    (1) 求直线 的解析式;
    (2) 过点C作 轴,交x轴于点E,若 平分 ,求抛物线W的解析式;
    (3) 若 ,将抛物线W向下平移 个单位得到抛物线 ,如图2,记抛物线 的顶点为 ,与 轴负半轴的交点为 ,与射线 的交点为 .问:在平移的过程中, 是否恒为定值?若是,请求出 的值;若不是,请说明理由.
  • 26. 在平面直角坐标系中,点到直线的距离即为点到直线的垂线段的长.

    (1) 如图1,取点M(1,0),则点M到直线l:y= x﹣1的距离为多少?
    (2) 如图2,点P是反比例函数y= 在第一象限上的一个点,过点P分别作PM⊥x轴,作PN⊥y轴,记P到直线MN的距离为d0 , 问是否存在点P,使d0 ?若存在,求出点P的坐标,若不存在,请说明理由.
    (3) 如图3,若直线y=kx+m与抛物线y=x2﹣4x相交于x轴上方两点A、B(A在B的左边).且∠AOB=90°,求点P(2,0)到直线y=kx+m的距离最大时,直线y=kx+m的解析式.

试题篮