河南驻马店市初中名校2019届九年级数学中考一模试卷

修改时间:2024-07-13 浏览次数:221 类型:中考模拟 编辑

选择试卷全部试题 *点击此按钮,可全选试卷全部试题,进行试卷编辑

一、单选题

  • 1. 的相反数是(   )
    A . B . -9 C . 9 D .
  • 2. 今年春节档电影中《流浪地球》凭借优质的口碑一路逆袭,被很多人评为“国产科幻电影之光”,吸引众多影迷纷纷走入影院为这部国产科幻电影打 ,据了解《流浪地球》上映首日的票房约为1.89亿1.89亿可用科学记数法表示为(   )
    A . B . C . D .
  • 3. 下面几何体中,其主视图与俯视图相同的是(  )

    A . B . C . D .
  • 4. 下列运算正确的是(   )
    A . B . C . D .
  • 5. 河南省某地区今年3月份第一周的最高气温分别为: ,关于这组数据,下列表述正确的是(   )
    A . 中位数是7 B . 众数是4 C . 平均数是4 D . 方差是6
  • 6. 如图,在平面直角坐标系 中,已知正比例函数 的图象与反比例函数 的图象交于 两点,当 时,自变量 的取值范围是(   )

    A . B . C . D .
  • 7. 若关于 的分式方程 有增根,则 的值是(   )
    A . B . C . D .
  • 8. 为了营造校园文学氛围,宣扬传统文化,郑州大学文学社社长想要先在社团内部组织一场“中国诗词大会”的活动,他将全社社员随机分成4组,则社员张亮和李凡被分在同一个组的概率是(   )
    A . B . C . D .
  • 9. 如图,在 中, ,按以下步骤作图:

    ①以点 为圆心,以小于 的长为半径画弧,分别交 于点

    ②分别以点 为圆心,以大于 的长为半径画弧,两弧相交于点

    ③作射线 ,交 边于点

    ,则 (   )

    A . 3 B . C . 6 D .
  • 10. 如图一,在等腰 中, ,点 从点 同时出发,点 的速度沿 方向运动到点 停止,点 的速度沿 方向运动到点 停止,若 的面积为 ,运动时间为 ,则 之间的函数关系图象如图二所示,则 长为(   )

     

    A . B . C . D .

二、填空题

三、解答题

  • 15. 先化简,再求值: ,其中 在不等式组 的整数解中取合适的值代入.
  • 16. “凑够一拨人就走,管它红灯绿灯。”曾经有一段时间,“中国式过马路”现象引起社会广泛关注和热议.交通安全与我们的生活息息相关,“珍惜生命,文明出行”是每个公民应遵守的规则.某市为了了解市民对“闯红灯”的认识,随机调查了部分市民,并根据调查结果绘制了如下尚不完整的统计图表.(每位市民仅持一种观点)

    调查结果统计表

    观点

    频数

    A.看到车少可以闯红灯

    90

    B.无论什么时候都不能闯红灯

    C.因为车让行人,行人可以闯红灯

    60

    D.凑够一拨人,大家一起过马路时可以闯红灯

    根据以上统计图表,解答下列问题:

    (1) 本次接受调查的市民共有人;
    (2) 扇形统计图中,扇形 的圆心角度数是
    (3) 若该市约有120万人,请估计“看到车少可以闯红灯”和“因为车让行人,行人可以闯红灯”观点的人数大约共有多少.
  • 17. 如图, 的直径,点 上一动点,过点 的切线,连接 并延长,交过点 的切线于点 ,点 的中点,连接 .

    (1) 求证: 切线;
    (2) 当 度时,四边形 为正方形;
    (3) 连接 于点 ,连接 ,若 时,四边形 为菱形.
  • 18. 如图,已知一次函数 的图象与反比例函数 的图象相交于点 ,与 轴相交于点 .

    (1) 求一次函数和反比例函数的解析式;
    (2) 点 是线段 上一动点,过点 作直线 轴交反比例函数的图象于点 ,连接 ,若 的面积为 ,求 的最大值.
  • 19. 某公司为了庆祝开业一周年,准备从公司大楼 的楼顶 处向下斜挂一些条幅,小张将高为1.5米的桩杆竖立在楼前 处(条幅的下端钉在桩杆顶端),在桩杆端 处观测到 ,为了多留出一些活动场地,小张沿 方向前进5米到达 处,测得 ,已知 三点在同一水平线上, ,求大楼的高度及条幅 的长度.(参考数据: ,结果精确到0.1米).

  • 20. 茶为国饮,茶文化是中国传统文化的重要组成部分,这也带动了茶艺、茶具、茶服等相关文化的延伸及产业的发展,在“春季茶叶节”期间,某茶具店老板购进了 两种不同的茶具.若购进 种茶具1套和 种茶具2套,需要250元;若购进 种茶具3套和 种茶具4套则需要600元.
    (1) 两种茶具每套进价分别为多少元?
    (2) 由于茶具畅销,老板决定再次购进 两种茶具共80套,茶具工厂对两种类型的茶具进行了价格调整, 种茶具的进价比第一次购进时提高了 种茶具的进价按第一次购进时进价的八折;如果茶具店老板此次用于购进 两种茶具的总费用不超过6240元,则最多可购进 种茶具多少套?
    (3) 若销售一套 种茶具,可获利30元,销售一套 种茶具可获利20元,在(2)的条件下,如何进货可使再次购进的茶具获得最大的利润?最大的利润是多少?
  • 21. 如图一,菱形 与菱形 的顶点 重合,点 在对角线 上,且 .

    (1) 问题发现:

    的值为

    (2) 探究与证明:

    将菱形 绕点 按顺时针方向旋转 角( ),如图二所示,试探究线段 之间的数量关系,并说明理由;

    (3) 拓展与运用:

    菱形 在旋转过程中,当点 三点在一条直线上时,如图三所示,连接 并延长,交 于点 ,若 ,则 的长为.

  • 22. 如图,直线 轴交于点 ,与 轴交于 点,抛物线 经过 两点,且与 轴交于另一点 .

    (1) 求直线及抛物线的解析式;
    (2) 点 是抛物线上一动点,当点 在直线 下方的抛物线上运动时,过点 轴交 于点 ,过点 轴交 于点 ,求 的最大值;
    (3) 在(2)的条件下,当 的值最大时,将 绕点 旋转,当点 落在 轴上时,直接写出此时点 的坐标.

试题篮