试题 试卷
题型:证明题 题类: 难易度:困难
北京首都师范大学附属中学2023-2024学年八年级上学期开学考试数学试题
(1)如图1,过F点作FD⊥AC交AC于D点,求证:FD=BC;
(2)如图2,连结BF交AC于G点,若AG=3,CG=1,求证:E点为BC中点.
(3)当E点在射线CB上,连结BF与直线AC交子G点,若BC=4,BE=3,则 . (直接写出结果)
问题:如图1,在等边三角形ABC内有一点P,且PA=2,PB= ,PC=1、求∠BPC度数的大小和等边三角形ABC的边长.
李明同学的思路是:将△BPC绕点B逆时针旋转60°,画出旋转后的图形(如图2),连接PP′,可得△P′PC是等边三角形,而△PP′A又是直角三角形(由勾股定理的逆定理可证),所以∠AP′B=150°,而∠BPC=∠AP′B=150°,进而求出等边△ABC的边长为 ,问题得到解决.
请你参考李明同学的思路,探究并解决下列问题:如图3,在正方形ABCD内有一点P,且PA= ,BP= ,PC=1.求∠BPC度数的大小和正方形ABCD的边长.
(1)如图1,若S△AOP=12,求P的坐标
(2)如图2,若P为AB的中点,点M、N分别是OA、OB边上的动点,点M从顶点A、点N从顶点O同时出发,且它们的速度都为1 cm/s,则在M、N运动的过程中,线段PM、PN之间有何关系?并证明
(3)如图3,若P为线段AB上异于A、B的任意一点,过B点作BD⊥OP,交OP、OA分别与F、D两点,E为OA上一点,且∠PEA=∠BDO,试判断线段OD与AE的数量关系,并说明理由
试题篮