试题 试卷
题型:单选题 题类:常考题 难易度:普通
如图,抛物线y=-x+4x+5交x轴于A、B(以A左B右)两点,交y轴于点C.(1)求直线BC的解析式;(2)点P为抛物线第一象限函数图象上一点,设P点的横坐标为m,△PBC的面积为S,求S与m的函数关系式;(3)在(2)的条件下,连接AP,抛物线上是否存在这样的点P,使得线段PA被BC平分,如果不存在,请说明理由;如果存在,求点P的坐标.
如图(1),在平面直角坐标系xOy中,抛物线y=ax2+bx+c(a≠0)与x轴交于A(﹣1,0),B(3,0),与y轴交于C(0,3),顶点为D(1,4),对称轴为DE.
先让我们一起来学习方程m2+1= 的解法:
解:令m2=a,则a+1= ,方程两边平方可得,(a+1)2=a+3
解得a1=1,a2=﹣2,∵m2≥0∴m2=1∴m=±1
点评:类似的方程可以用“整体换元”的思想解决.
不妨一试:
如图1,在平面直角坐标系xOy中,抛物线y=ax2+1经过点A(4,﹣3),顶点为点B,点P为抛物线上的一个动点,l是过点(0,2)且垂直于y轴的直线,过P作PH⊥l,垂足为H,连接PO.
在平面直角坐标系xOy中,已知二次函数y= 的图象经过点A(2,0)和点B(1,﹣ ),直线l经过抛物线的顶点且与y轴垂直,垂足为Q.
试题篮