试题 试卷
题型:解答题 题类:模拟题 难易度:普通
如图,已知抛物线y=ax2﹣4x+c经过点A(0,﹣6)和B(3,﹣9).
(1)求出抛物线的解析式;
(2)写出抛物线的对称轴方程及顶点坐标;
(3)点P(m,m)与点Q均在抛物线上(其中m>0),且这两点关于抛物线的对称轴对称,求m的值及点Q的坐标;
(4)在满足(3)的情况下,在抛物线的对称轴上寻找一点M,使得△QMA的周长最小.
已知二次函数y=ax²+bx+c(a≠0)的图像如图所示,则下列结论中正确的是( )
①方程x2﹣4x﹣12=0是立根方程;
②若点(p,q)在反比例函数y= 的图象上,则关于x的方程px2+4x+q=0是立根方程;
③若一元二次方程ax2+bx+c=0是立根方程,且相异两点M(1+t,s),N(4﹣t,s)都在抛物线y=ax2+bx+c上,则方程ax2+bx+c=0的其中一个根是 .
正确的是( )
试题篮