试题

试题 试卷

logo

题型:阅读理解 题类:常考题 难易度:普通

重庆市育才中学2019届九年级上学期数学第二次月考试卷

阅读下列材料,并解决问题:任意一个大于1的正整数m都可以表示为:m=p2+q(p、q是正整数),在m的所有这种表示中,如果 最小时,规定:F(m)= .例如:21可以表示为:21=12+20=22+17=32+12=42+5,因为 > > > ,所以F(21)= .
(1)、求F(33)的值;
(2)、如果一个正整数n可以表示为t2-t(其中t≥2,且是正整数),那么称n是次完全平方数,证明:任何一个次完全平方数n,都有F(n)=1;
(3)、一个三位自然数k,k=100a+10b+c(其中1≤a≤9,0≤b≤9,0≤c≤9,且a≤c,a、b、c为整数),满足十位上的数字恰好等于百位上的数字与个位上的数字之和,且k与其十位上数字的2倍之和能被9整除,求所有满足条件的k中F(k)的最小值.
举一反三
返回首页

试题篮