浙江省宁波七中教育集团2019-2020学年九年级下学期数学第四次月考试卷

修改时间:2024-07-13 浏览次数:332 类型:月考试卷 编辑

选择试卷全部试题 *点击此按钮,可全选试卷全部试题,进行试卷编辑

一、选择题(每小题4分,共48分)

  • 1. -3的倒数等于( )
    A . 9 B . -3 C . D .
  • 2. 下列计算正确的是( )
    A . x+x=2x2 B . x-x=1 C . x·x=x2 D . x÷x= 0
  • 3. 截止2020年4月12日,本次新冠病毒感染病例美国超55万人,其中55万用科学记数法表示为( )
    A . 5.5x105 B . 55×104 C . 5.5×104 D . 0.55×106
  • 4. 由5个大小相同的正方体组成的几何体如图所示,其主视图是( )

    A . B . C . D .
  • 5. 一组数据1,1,1,3,5,7,现加入一个整数a,一定不会发生变化的统计量是( )
    A . 平均数 B . 中位数 C . 众数 D . 方差
  • 6. 满足不等式组 整数解的和是( )
    A . 2 B . 3 C . 4 D . 5
  • 7. 如图,∠AOB=100°,点C在⊙O上,且点C不与A,B重合,则∠ACB的度数为(    )

    A . 50° B . 80°或50° C . 130° D . 50°或130°
  • 8. 如图,飞镖游戏板中每一块小正方形除颜色外都相同。若一个人向游戏板投掷飞镖一次(假设飞镖落在游戏板上),则飞镖落在阴影部分的概率是( )

    A . B . C . D .
  • 9. “赵爽弦图”是由四个全等的直角三角形与一个小正方形拼成的一个大正方形。如果小正方形的面积为4, 大正方形的面积为100,直角三角形中较小的锐角为α,则tanα的值等于( )

    A . B . C . D .
  • 10. 《九章算术》是我国古代著名数学著作,书中记载:“今有圆材,埋在壁中,不知大小以锯锯之,深一寸,锯道长一尺,问径几何?”用数学语言可表述为:“如图,CD为⊙O的直径,弦AB⊥DC于E,ED=1寸,AB=10寸,求直径CD的长。”则CD为( )

    A . 10寸 B . 3寸 C . 20寸 D . 26寸
  • 11. 如图,∠A=∠B=∠C=∠D=∠E=∠F=60°,AB=3,BC=DE=1,CD=2,EF=0.5,则AG的长是( )

    A . 5.5 B . 6 C . 6.5 D . 7
  • 12. 一个大矩形按如图方式分割成16个小矩形,且只有标号为①②③的三个大小不同的小矩形为正方形,在满足条件的所有分割中,若知道16个小矩形中n个小矩形的周长,就一定能算出这个大矩形的面积,则n的最小值是( )

    A . 3 B . 4 C . 5 D . 6

二、填空题(每小题4分,共24分)

  • 13. 在-2,2, 这三个实数中,最小的是
  • 14. 因式分解:x2-x=
  • 15. 将抛物线y=x²先向上平移2个单位,再向左平移4个单位后的抛物线的解析式是
  • 16. 有一个只含有x的代数式,x的值与代数式的值对应如下表:

    x

    0

    1

    2

    代数式的值

    2

    1

    2

    请写出两个符合上述条件的代数式,它可以是

  • 17. 如图,在△ABC中,AB=AC, BC=12,E为AC的中点,线段BE的垂直平分线交边BC于D,设tan∠ACB=x,BD=y,则y与x的函数关系式是

  • 18. 如图,在Rt△AOB中,∠AOB=90°,AO=3,BO=4,将△AOB绕顶点O逆时针旋转α(0<α<90°),得到△A'OB',A'B'与OB相交于点E,若△OA'E为等腰三角形,则线段B'E的长度为

三、解答题(本大题有8小题,共78分)

  • 19. 计算: -(π-2020)0+|2 -2|-
  • 20. 如图正方形网格中,每个小正方形的边长都为1。请在所给网格中按下列要求画出图形。

    (1) 在图1中以AB为边画一个等腰三角形ABC,使C在格点上,且另两边的长都是无理数;
    (2) 在图2中以AB为边画一个凸多边形,使多边形各顶点都在格点上且是中心对称图形,并且各边长都是无理数。
  • 21. 某学校环保小组为了解游客在某园区内购买瓶装饮料数量的情况,一天他们分别在A、B、C三个出口处,对离开园区的游客进行调查,其中在A出口调查所得的数据整理后绘成图1。

    图2表一

    出口

    B

    C

    人均购买饮料数量(瓶)

    3

    2

    (1) 在A出口的被调查游客中,购买2瓶及2瓶以上饮料的游客人数占A出口的被调查游客人数的%。
    (2) 求A出口的被调查游客在园区内人均购买了多少瓶饮料?
    (3) 已知B、C两个出口的被调查游客在园区内人均购买饮料的数量如表一(图2)所示,若C出口的被调查人数比B出口的被调查人数多2万,B、C两个出口的被调查游客在园区内共购买了49万瓶饮料,试问B出口的被调查游客人数为多少万?
  • 22. 图1是一种折叠门,由上下轨道和两扇长宽相等的活页门组成,整个活页门的右轴固定在门框上,通过推动左侧活页门开关。图2是其俯视简化示意图,已知轨道AB=120cm,两扇活页门的宽OC=OB=60cm,点B固定,当点C在AB上左右运动时,OC与OB的长度不变。

    (1) 若∠OBC=53°,求AC的长。

    (结果保留整数,参考数据:sin53°≈0.8,cos53°≈0.6,tan53°≈1.3)

    (2) 当点C从点A向右运动60cm时,求点O在此过程中运动的路径长。
  • 23. 已知一次函数y=kx+2的图象与反比例函数y= 的图象交于点P,点P在第一象限。PA⊥x轴于点A,PB⊥y轴于点B。一次函数的图象分别交x轴、y轴于点C、D,且S△PBD=4,

    (1) 求点D的坐标;
    (2) 求一次函数与反比例函数的解析式;
    (3) 直接写出当x>0时,一次函数的值大于反比例函数的值的x的取值范围。
  • 24. 空地上有一段长为20m的旧墙MN,小敏利用旧墙和木栏围成一个矩形菜园ABCD,已知木栏总长100m。设AD=x(m),矩形菜园ABCD的面积为y(m²) .

    (1) 若x≤20,如图1,矩形菜园的一边靠墙,另三边一共用了100m木栏。

    ①求y关于x的函数表达式,并写出自变量x的取值范围。

    ②当AD为多少米时,矩形菜园ABCD的面积最大,并求出最大值。

    (2) 若x>20,如图2,且空地足够大,请你合理利用旧墙及所给木栏,帮小敏设计一个方案,使得所围成的矩形菜园ABCD的面积最大,并求出最大值。
  • 25. 如果一个三角形的两个内角α,β满足α+2β=90°,那么我们称这样的三角形为“非常三角形”。

    (1) 若△ABC是“非常三角形”,∠C>90°,∠A=50°,则∠B=
    (2) 如图,△ABC中,AB=AC,D是边BC上一点,以BD为直径的⊙O经过点A,连结AD。

    ①求证:△ADC为“非常三角形”。

    ②若sin B= ,AB=8,弦AB上是否存在一点P,使得△BDP是“非常三角形”,若存在,请求出线段AP的长度;若不存在,请说明理由。

  • 26. 如图,在平面直角坐标系xOy中,抛物线y=ax²+bx+c与x轴交于点A(2,0)、B(6,0),与y轴交于点C(0,6),顶点为D,连结AC,作直线BC,点E是抛物线对称轴上的一个动点。

    (1) 求出抛物线的解析式。
    (2) 若∠BCE=∠OCA,求点E的坐标。
    (3) 在(2)的条件下,延长CE交抛物线于点F,直接写出所有满足△GBD∽△FBC的点G的坐标。

试题篮