湖南省株洲市石峰区2019年中考数学模拟试卷(二)

修改时间:2024-07-13 浏览次数:201 类型:中考模拟 编辑

选择试卷全部试题 *点击此按钮,可全选试卷全部试题,进行试卷编辑

一、选择题

  • 1. ﹣ 的绝对值是(  )

    A . B . C . 2 D . ﹣2
  • 2. 下列计算正确的是(   )
    A . a4+a3a7 B . a4a3a12 C . a43a7 D . a4÷a3a
  • 3. 生物学家发现了某种花粉的直径约为0.0000036毫米,数据0.0000036用科学记数法表示正确的是(  )
    A . 3.6×10﹣5 B . 0.36×10﹣5 C . 3.6×10﹣6 D . 0.36×10﹣6
  • 4. 数据1,2,3,4,4,5的众数和中位数的差是(   )
    A . 1 B . ﹣0.5 C . 0.5 D . ﹣1
  • 5. 下列图形中,既是轴对称又是中心对称图形的是(    )
    A . B . C . D .
  • 6. 不等式组 的解集为(   )
    A . x>0 B . x>1 C . 无解 D . 0<x<1
  • 7. 如图,在▱ABCD中,对角线AC与BD相交于点O,E是边CD的中点,连结 ,则 的度数为( )

    A . B . C . D .
  • 8. 当x>0时,yx的增大而增大的函数是(   )
    A . y=﹣x B . y C . y=- D . y=﹣x2
  • 9. 如图,已知点E是矩形ABCD的对角线AC上的一动点,正方形EFGH的顶点G、H都在边AD上,若AB=3,BC=4,则tan∠AFE的值(   )

    A . 等于 B . 等于 C . 等于 D . 随点E位置的变化而变化
  • 10. 如图, 抛物线 轴交于点A(-1,0),顶点坐标(1,n)与 轴的交点在(0,2),(0,3)之间(包 含端点),则下列结论:① ;② ;③对于任意实数m,a+b≥am2+bm总成立;④关于 的方程 有两个不相等的实数根.其中结论正确的个数为   

    A . 1 个 B . 2 个 C . 3 个 D . 4 个

二、填空题

  • 11. 分式方程 的解是
  • 12. 已知ab , 某学生将一直角三角板放置如图所示,如果∠1=35°,则∠2的度数为

  • 13. 因式分解:x3﹣4x2+4x
  • 14. 一个三角形的两边长分别为3和6,第三边长是方程x2-10x+21=0的根,则三角形的周长为.
  • 15. 我国古代数学著作《九章算术》中有一道阐述“盈不足术”的问题,译文为:“现有几个人共同购买一个物品,每人出8元,则多3元;每人出7元,则差4元.问这个物品的价格是多少元?”该物品的价格是元.
  • 16. 如图,正六边形ABCDEF外接圆的半径为4,则其内切圆的半径是

  • 17. 如图,平行于x轴的直线与函数yk1>0,x>0),yk2>0,x>0)的图象分别相交于AB两点,点A在点B的右侧,Cx轴上的一个动点,若△ABC的面积为3,则k1k2的值为

  • 18. 如图,往竖直放置的在A处山短软管连接的粗细均匀细管组成的“U形装置中注入一定量的水,水面高度为9cm , 现将右边细管绕A处顺时针方向旋转60°到AB位置,则AB中水柱的长度为cm

三、综合题

  • 20. 先化简,再求值:(x﹣1+ )÷ ,其中x的值从不等式﹣1≤x<2.5的整数解中选取.
  • 21. “高低杠”是女子体操特有的一个竞技项目,其比赛器材由高、低两根平行杠及若干支架组成,运动员可根据自己的身高和习惯在规定范围内调节高、低两杠间的距离.某兴趣小组根据高低杠器材的一种截面图编制了如下数学问题,请你解答.

    如图所示,底座上A,B两点间的距离为90cm.低杠上点C到直线AB的距离CE的长为155cm,高杠上点D到直线AB的距离DF的长为234cm,已知低杠的支架AC与直线AB的夹角∠CAE为82.4°,高杠的支架BD与直线AB的夹角∠DBF为80.3°.求高、低杠间的水平距离CH的长.(结果精确到1cm,参考数据sin82.4°≈0.991,cos82.4°≈0.132,tan82.4°≈7.500,sin80.3°≈0.983,cos80.3°≈0.168,tan80.3°≈5.850)

  • 22. 央视“经典咏流传”开播以来受到社会广泛关注.我市某校就“中华文化我传承——地方戏曲进校园”的喜爱情况进行了随机调查,对收集的信息进行统计,绘制了下面两副尚不完整的统计图.请你根据统计图所提供的信息解答下列问题:

    图中A表示“很喜欢”,B表示“喜欢”,C表示“一般”,D表示“不喜欢”.

    (1) 被调查的总人数是人,扇形统计图中C部分所对应的扇形圆心角的度数为.
    (2) 补全条形统计图;
    (3) 若该校共有学生1800人,请根据上述调查结果,估计该校学生中A类有人;
    (4) 在抽取的A类5人中,刚好有3个女生2个男生,从中随机抽取两个同学担任两角色,用树形图或列表法求出被抽到的两个学生性别相同的概率.
  • 23. 如图,四边形ABCD是矩形,E是BD上的一点,∠BAE=∠BCE,∠AED=∠CED,点G是BC,AE延长线的交点,AG与CD相交于点F.

    (1) 求证:四边形ABCD是正方形;
    (2) 当AE=3EF,DF=1时,求GF的值.
  • 24. 如图,一次函数y1kx+bkb为常数,k≠0)的图象与反比例函数y2m为常数,m≠0)的图象相交于点M(1,4)和点N(4,n).

    (1) 反比例函数与一次函数的解析式.
    (2) 函数y2 的图象(x>0)上有一个动点C , 若先将直线MN平移使它过点C , 再绕点C旋转得到直线PQPQx轴于点A , 交y轴点B , 若BC=2CA , 求OAOB的值.
  • 25. 如图,已知AB是⊙O的直径,AC是弦(不是直径),ODAC垂足为G交⊙ODE为⊙O上一点(异于AB),连接EDAC于点F , 过点E的直线交BACA的延长线分别于点PM , 且MEMF

    (1) 求证:PE是⊙O的切线.
    (2) 若DF=2,EF=8,求AD的长.
    (3) 若PE=6 ,sin∠P ,求AE的长.
  • 26. 已知二次函数yx2+bx+c+1的图象与x轴交于点Ax1 , 0)、Bx2 , 0),且x1x2 , 与y轴的负半轴交于点C

    (1) 当b=1时,求c的取值范围;
    (2) 如果以AB为直径的半圆恰好过点C , 求c的值;
    (3) 在(2)的条件下,如果二次函数的对称轴lx轴、直线BC、直线AC的延长线分别交于点DEF , 且满足DE=2EF , 求二次函数的表达式.

试题篮