江西省吉安市青原区2018-2019学年八年级下学期数学期中考试试卷

修改时间:2024-07-13 浏览次数:345 类型:期中考试 编辑

选择试卷全部试题 *点击此按钮,可全选试卷全部试题,进行试卷编辑

一、单选题

  • 1. 如果ab , 那么下列各式中正确的是(   )
    A . a﹣2<b﹣2 B . C . ﹣2a<﹣2b D . a>﹣b
  • 2. 已知不等式组  的解集为﹣1<x<1,则(a+1)(b﹣1)值为(   )
    A . 6 B . ﹣6 C . 3 D . ﹣3
  • 3. 如图,正方形OABC的两边OAOC分别在x轴、y轴上,点D(5,3)在边AB上,以C为中心,把△CDB旋转90°,则旋转后点D的对应点D′的坐标是(   )

    A . (2,10)   B . (﹣2,0) C . (2,10)或(﹣2,0)  D . (10,2)或(﹣2,0)
  • 4. 小明要从甲地到乙地,两地相距1.8千米.已知他步行的平均速度为90米/分,跑步的平均速度为210米/分,若他要在不超过15分钟的时间内从甲地到达乙地,至少需要跑步多少分钟?设他需要跑步x分钟,则列出的不等式为(   )
    A . 210x+90(15﹣x)≥1800 B . 90x+210(15﹣x)≤1800 C . 210x+90(15﹣x)≥1.8 D . 90x+210(15﹣x)≤1.8
  • 5. △ABC中,AB=AC=5,BC=8,点P是BC边上的动点,过点P作PD⊥AB于点D,PE⊥AC于点E,则PD+PE的长是(   )
    A . 4.8 B . 4.8或3.8 C . 3.8 D . 5
  • 6. 如图,在直角坐标系中,已知点A(﹣3,0)、B(0,4),对△OAB连续作旋转变换,依次得到△1、△2、△3、△4、…,△16的直角顶点的坐标为(   )

    A . (60,0) B . (72,0) C . (67 D . (79

二、填空题

  • 7. 如图是一块长方形ABCD的场地,长ABa米,宽ADb米,从AB两处入口的小路宽都为1米,两小路汇合处路宽为2米,其余部分种植草坪,则草坪面积为2

  • 8. 如图,在平面直角坐标系xOy中,A,B两点的坐标分别为(0,2),(-1,0).将线段AB沿x轴的正方向平移,若点B的对应点B′坐标为(2,0),则点A的对应点A′的坐标为

  • 9. 如图,函数 的图象相交于点A(m,2),则关于x的不等式-2x≤ax+3的解集是.

  • 10. 若关于x的不等式组 的整数解共有4个,则m的取值范围是
  • 11. 在RtABC中,∠C=90°,ACBC (如图),若将△ABC绕点A顺时针方向旋转60°到△ABC′的位置,联结CB , 则CB的长为

  • 12. 已知△ABC中,BC=6,AB、AC的垂直平分线分别交边BC于点M、N,若MN=2,则△AMN的周长是

三、解答题

  • 13. 解下列不等式(组):
    (1)  
    (2) ,并把它的解集表示在数轴上.
  • 14. 如图,在△ABC中,ABACDBC上一点,∠B=30°,连接AD

    (1) 若∠BAD=45°,求证:△ACD为等腰三角形;
    (2) 若△ACD为直角三角形,求∠BAD的度数.
  • 15. 如图,在平面直角坐标系中,△ABC三个顶点的坐标分别为:A(1,﹣4),B(5,﹣4),C(4,﹣1).

    (1) 将△ABC经过平移得到△A1B1C1 , 若点C的应点C1的坐标为(2,5),则点AB的对应点A1B1的坐标分别为
    (2) 在如图的坐标系中画出△A1B1C1 , 并画出与△A1B1C1关于原点O成中心对称的△A2B2C2
  • 16. 某市为鼓励居民节约用水,对每户用水按如下标准收费:若每户每月用水不超过8m3 , 则每m3按1元收费;若每户每月用水超过8m3 , 则超过部分每m3按2元收费.某用户7月份用水比8m3要多xm3 , 交纳水费y元.
    (1) 求y关于x的函数解析式,并写出x的取值范围.
    (2) 此用户要想每月水费控制在20元以内,那么每月的用水量最多不超过多少m3
  • 17. 已知:如图,在Rt△ABC中,∠ACB=90°,ACBC , 点DBC的中点,CEAD , 垂足为点EBFACCE的延长线于点F

    求证:AC=2BF

  • 18. 某年级380名师生秋游,计划租用7辆客车,现有甲、乙两种型号客车,它们的载客量和租金如表.

    甲种客车

    乙种客车

    载客量(座/辆)

    60

    45

    租金(元/辆)

    550

    450

    (1) 设租用甲种客车x辆,租车总费用为y元.求出y(元)与x(辆)之间的函数表达式;
    (2) 当甲种客车有多少辆时,能保障所有的师生能参加秋游且租车费用最少,最少费用是多少元?
  • 19. 在△ABC中,∠B+∠ACB=30°,AB=4,△ABC逆时针旋转一定角度后与△ADE重合,且点C恰好成为AD中点,如图

    (1) 指出旋转中心,并求出旋转角的度数.
    (2) 求出∠BAE的度数和AE的长.
  • 20. 如图,在Rt△ABC中,∠ACB=90°,点DE分别在ABAC上,且CEBC , 连接CD , 将线段CD绕点C按顺时针方向旋转90°后得到CF , 连接EF

    (1) 求证:△BDC≌△EFC
    (2) 若EFCD , 求证:∠BDC=90°.
  • 21. 如图1,已知△ABC中,ABAC , 点D是△ABC外一点(与点A分别在直线BC两侧),且DBDC , 过点DDEAC , 交射线ABE , 连接AEBCF

    (1) 求证:AD垂直BC
    (2) 如图1,点E在线段AB上且不与B重合时,求证:DEAE
    (3) 如图2,当点E在线段AB的延长线上时,写出线段DEACBE的数量关系.
  • 22. 为加快“秀美荆河水系生态治理工程”进度,污水处理厂决定购买10台污水处理设备.现有AB两种型号的设备,每台的价格分别为a万元,b万元,每月处理污水量分别为240吨,200吨.已知购买一台A型设备比购买一台B型设备多2万元,购买2台A型设备比购买3台B型设备少6万元.
    (1) 求ab的值;
    (2) 厂里预算购买污水处理设备的资金不超过105万元,你认为有哪几种购买方案;
    (3) 在(2)的条件下,若每月要求处理污水量不低于2040吨,为了节约资金,请你为污水处理厂设计一种最省钱的购买方案.
  • 23. 几何探究题

    (1) 发现:在平面内,若BCaACb , 其中ab

    当点A在线段BC上时(如图1),线段AB的长取得最小值,最小值为

    当点A在线段BC延长线上时(如图2),线段AB的长取得最大值,最大值为

    (2) 应用:点A为线段BC外一动点,如图3,分别以ABAC为边,作等边△ABD和等边△ACE , 连接CDBE

    ①证明:CDBE

    ②若BC=3,AC=1,则线段CD长度的最大值为

    (3) 拓展:如图4,在平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(5,0),点P为线AB外一动点,且PA=2,PMPB , ∠BPM=90°.请直接写出线段AM长的最大值及此时点P的坐标.

试题篮