试题
试题
试卷
登录
注册
当前位置:
首页
题型:单选题
题类:模拟题
难易度:普通
2017年山西省太原市高考数学三模试卷(理科)
我国古代数学名著《九章算术》的论割圆术中有:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣.”它体现了一种无限与有限的转化过程.比如在表达式1+
中“…”即代表无数次重复,但原式却是个定值,它可以通过方程1+
=x求得x=
.类比上述过程,则
=( )
A、
3
B、
C、
6
D、
2
举一反三
观察下列各式:
,
,
,
,
, …,则
( )
平面几何中,有边长为a的正三角形内任一点到三边距离之和为定值
a,类比上述命题,棱长为a的正四面体内任一点到四个面的距离之和为( )
从装有n+1个球(其中n个白球,1个黑球)的口袋中取出m个球(0<m≤n,m,n∈N),共有
种取法.在这
种取法中,可以分成两类:一类是取出的m个球全部为白球,共有
种取法;另一类是取出的m个球有m﹣1个白球和1个黑球,共有
种取法.显然
,即有等式:
成立.试根据上述思想化简下列式子:
={#blank#}1{#/blank#}.
已知结论:“在三边长都相等的△ABC中,若D是BC的中点,G是△ABC外接圆的圆心,则
”.若把该结论推广到空间,则有结论:“在六条棱长都相等的四面体ABCD中,若M是△BCD的三边中线的交点,O为四面体ABCD外接球的球心,则
={#blank#}1{#/blank#}.
在平面几何中有如下结论:正三角形
的内切圆面积为
,外接圆面积为
,则
,推广到空间中可以得到类似结论:已知正四面体
的内切球体积为
,外接球体积为
,则为
( )
在平面直角坐标系中,以点
为圆心,
为半径的圆的方程为
,类比圆的方程,请写出在空间直角坐标系中以点
为球心,半径为
的球的方程为{#blank#}1{#/blank#}.
返回首页
相关试卷
2025高考一轮复习(人教A版)第十六讲 三角函数的应用
2025高考一轮复习(人教A版)第五十三讲 列联表与独立性检验
2025高考一轮复习(人教A版)第五十二讲 一元线性回归模型及其应用
2025高考一轮复习(人教A版)第五十一讲 成对数据的相关关系
2025高考一轮复习(人教A版)第五十讲 正态分布
试题篮
编辑
生成试卷
取消
登录
x
请输入网站账号/手机号码/邮箱
请输入密码
自动登录
忘记密码
登录
其它登录方式:
免费注册