试题 试卷
题型:解答题 题类:常考题 难易度:普通
二面角的平面角及求法3++++++
(Ⅰ)求证:平面SAD⊥平面SBC;
(Ⅱ)求平面SCD与底面ABCD所成二面角的余弦值.
(Ⅰ)求证:AC∥平面DEF;
(Ⅱ)若二面角D﹣AB﹣E为直二面角,
( i)求直线AC与平面CDE所成角的大小;
( ii)棱DE上是否存在点P,使得BP⊥平面DEF?若存在,求出 的值;若不存在,请说明理由.
(Ⅰ)证明:A1D⊥平面A1BC;
(Ⅱ)求二面角A﹣BD﹣B1的平面角的正弦值.
(Ⅰ)若AF= ,求证:CD⊥EF;
(Ⅱ)设平面DEF与平面DPA所成二面角的平面角为θ,试确定点F的位置,使得cosθ= .
(Ⅰ)若AF⊥BD,证明:△BDE为直角三角形;
(Ⅱ)若DE∥CF, ,求平面ADC与平面ABFE所成角的余弦值.
试题篮