题型:解答题 题类:模拟题 难易度:普通
2017年四川省广安、遂宁、内江、眉山高考数学一诊试卷(理科)
年龄 (岁) | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
身高 (cm) | 121 | 128 | 135 | 141 | 148 | 154 | 160 |
(Ⅰ)求身高y关于年龄x的线性回归方程;
(Ⅱ)利用(Ⅰ)中的线性回归方程,分析张三同学7岁至13岁身高的变化情况,如17岁之前都符合这一变化,请预测张三同学15岁时的身高.
附:回归直线的斜率和截距的最小二乘法估计公式分别为:
= , .
xi(月) | 1 | 2 | 3 | 4 | 5 |
yi(千克) | 0.5 | 0.9 | 1.7 | 2.1 | 2.8 |
零件数x(个) | 10 | 20 | 30 | 40 | 50 |
加工时间y(分钟) | 62 | 68 | 75 | 81 | 89 |
由最小二乘法求得回归直线方程 ,则 的值为{#blank#}1{#/blank#}.
得到下面的散点图及一些统计量的值.
|
|
|
|
|
|
|
46.6 | 563 | 6.8 | 289.8 | 1.6 | 1469 | 108.8 |
其中wi= , =
(Ⅰ)根据散点图判断,y=a+bx与y=c+d 哪一个适宜作为年销售量y关于年宣传费x的回归方程类型?(给出判断即可,不必说明理由)
(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y关于x的回归方程;
(Ⅲ)已知这种产品的年利润z与x、y的关系为z=0.2y﹣x.根据(Ⅱ)的结果回答下列问题:
(i)年宣传费x=49时,年销售量及年利润的预报值是多少?
(ii)年宣传费x为何值时,年利润的预报值最大?
附:对于一组数据(u1 , v1),(u2 , v2),(un , vn),其回归直线v=α+βμ的斜率和截距的最小二乘估计分别为: = , = ﹣ .
平均气温(℃) | ||||
销售额(万元) |
根据以上数据,求得 与 之间的线性回归方程 的系数 ,则 {#blank#}1{#/blank#}
试题篮