试题 试卷
题型:综合题 题类:常考题 难易度:困难
山东省济宁市曲阜市2016-2017学年八年级下学期数学期末考试试卷
如图,在四边形OABC中,OA∥BC,∠OAB=90°,O为原点,点C的坐标为(2,8),点A的坐标为(26,0),点D从点B出发,以每秒1个单位长度的速度沿BC向点C运动,点E同时从点O出发,以每秒3个单位长度的速度沿折线OAB运动,当点E达到点B时,点D也停止运动,从运动开始,设D(E)点运动的时间为t秒.
如图,四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点.(1)请判断四边形EFGH的形状?并说明为什么.(2)若使四边形EFGH为正方形,那么四边形ABCD的对角线应具有怎样的性质?
D、E分别是△ABC的边AB、AC的中点.O是平面上的一动点,连接OB、OC,G、F分别是OB、OC的中点,顺次连接点D、E、F、G.(1)如图1,当点O在△ABC内时,求证:四边形DEFG是平行四边形;(2)若点O在△ABC外,其余条件不变,点O的位置应满足什么条件,能使四边形DEFG是菱形?请在画2中补全图形,并说明理由.
如图,直线y= x+1与y轴交于A点,过点A的抛物线y=﹣ x2+bx+c与直线交于另一点B,过点B作BC⊥x轴,垂足为点C(3,0).
①AB∥CD AD∥BC ②AB=CD AD=BC ③AO=CO BO=DO ④AB∥CD AD=BC
其中一定能判断这个四边形是平行四边形的共有( ).
试题篮