试题

试题 试卷

logo

题型:综合题 题类:真题 难易度:普通

2014年江苏省镇江市中考数学试卷

六•一儿童节,小文到公园游玩.看到公园的一段人行弯道MN(不计宽度),如图,它与两面互相垂直的围墙OP、OQ之间有一块空地MPOQN(MP⊥OP,NQ⊥OQ),他发现弯道MN上任一点到两边围墙的垂线段与围墙所围成的矩形的面积都相等,比如:A、B、C是弯道MN上的三点,矩形ADOG、矩形BEOH、矩形CFOI的面积相等.爱好数学的他建立了平面直角坐标系(如图),图中三块阴影部分的面积分别记为S1、S2、S3 , 并测得S2=6(单位:平方米).OG=GH=HI.

(1)、求S1和S3的值;
(2)、设T(x,y)是弯道MN上的任一点,写出y关于x的函数关系式;
(3)、公园准备对区域MPOQN内部进行绿化改造,在横坐标、纵坐标都是偶数的点处种植花木(区域边界上的点除外),已知MP=2米,NQ=3米.问一共能种植多少棵花木?
举一反三
返回首页

试题篮