试题 试卷
题型:解答题 题类:模拟题 难易度:普通
深圳市2017年初中毕业生学业考试数学试卷模拟试题(二)
如图1,边长为2的正方形ABCD中,E是BA延长线上一点,且AE=AB,点P从点D出发,以每秒1个单位长度沿D→C⟶B向终点B运动,直线EP交AD于点F,过点F作直线FG⊥DE于点G,交AB于点R.
如图,四边形ABCD是正方形,延长BC至点E,使CE=CA,连接AE交CD于点F,则∠AFC的度数是( )
如图,在正方形ABCD中,连接BD,点O是BD的中点,若M、N是边AD上的两点,连接MO、NO,并分别延长交边BC于两点M′、N′,则图中的全等三角形共有( )
如图,边长为1的正方形ABCD的对角线AC、BD相交于点O,有直角∠MPN,使直角顶点P与点O重合,直角边PM、PN分别与OA、OB重合,然后逆时针旋转∠MPN,旋转角为θ(0°<θ<90°),PM、PN分别交AB、BC于E、F两点,连接EF交OB于点G,则下列结论中正确的是{#blank#}1{#/blank#}.
(1)EF= OE;(2)S四边形OEBF:S正方形ABCD=1:4;(3)BE+BF= OA;(4)在旋转过程中,当△BEF与△COF的面积之和最大时,AE= .
试题篮