试题

试题 试卷

logo

题型:综合题 题类:常考题 难易度:困难

2016-2017学年河北省张家口市宣化县九年级上学期期末数学试卷

问题提出

平面内不在同一条直线上的三点确定一个面,那么平面内的四点(任意三点均不在同一直线上),能否在同一个面上呢?

初步思考

设不在同一条直线上的三点A、B、C确定的圆为⊙O.

(1)、当C、D在线段AB的同侧时.

如图①,若点D在⊙O上,此时有∠ACB=∠ADB,理由是

如图②,若点D在⊙O内,此时有∠ACB∠ADB;

如图③,若点D在⊙O外,此时有∠ACB∠ADB(填“=”、“>”、“<”)

由上面的探究,请直接写出A、B、C、D四点在同一个圆上的条件:

类比学习

(2)、仿照上面的探究思路,请探究:当C、D在线段AB的异侧时的情形.

由上面的探究,请用文字语言直接写出A、B、C、D四点在同一个圆上的条件:

拓展延伸

(3)、如何过圆上一点,仅用没有刻度的直尺,作出已知直径的垂线?

已知:如图,AB是⊙O的直径,点C在⊙O上,求作:CN⊥AB

作法:①连接CA、CB

②在CB上任取异于B、C的一点D,连接DA,DB;

③DA与CB相交于E点,延长AC、BD,交于F点;

④连接F、E并延长,交直径AB与M;

⑤连接D、M并延长,交⊙O于N,连接CN,则CN⊥AB.

请安上述作法在图④中作图,并说明CN⊥AB的理由.(提示:可以利用(2)中的结论)

返回首页

试题篮