试题 试卷
题型:单选题 题类:常考题 难易度:普通
正多边形的定义
(1)一组对边平行,一组对边相等的四边形是平行四边形;
(2)对角线互相平分且相等的四边形是矩形;
(3)对角线互相垂直的四边形是菱形;
(4)有一个角是直角的四边形是矩形;
(5)有四个角是直角的四边形是矩形;
(6)对角线互相垂直平分且相等的四边形是正方形.
如图,以AB为直径作半圆O,点C为半圆上与A,B不重合的一动点,过点C作CD⊥AB于点D,点E与点D关于BC对称,BE与半圆交于点F,连CE.
(1)判断CE与半圆O的位置关系,并给予证明.
(2)点C在运动时,四边形OCFB的形状可变为菱形吗?若可以,猜想此时∠AOC的大小,并证明你的结论;若不可以,请说明理由.
①S△ODB=S△OCA;
②四边形OAMB的面积为2﹣a;
③当a=1时,点A是MC的中点;
④若S四边形OAMB=S△ODB+S△OCA , 则四边形OCMD为正方形.
其中正确的是{#blank#}1{#/blank#}.(把所有正确结论的序号都填在横线上)
试题篮