试题 试卷
题型:证明题 题类:常考题 难易度:普通
如图,已知△ABC是等边三角形,D、E、F分别是射线BA、CB、AC上一点,且AD=BE=CF,连接DE、EF、DF.
(1)求证:∠BDE=∠CEF;
(2)试判断△DEF的形状,并简要说明理由.
如图,点B在射线AE上,∠CAE=∠DAE,∠CBE=∠DBE.
求证:AC=AD.
如图1,在平面直角坐标系中,点A,B,C的坐标分别是(0,a),(b,0),(a,﹣b)且a2+b2+4a﹣4b=﹣8,连接BC交y轴于点M,N为AC中点,连接NO并延长至D,使OD=ON,连接BD.
(1)求a,b的值;
(2)求∠DBC;
(3)如图2,Q为ON,BC的交点,连接AQ,AB,过点O作OP⊥OQ,交AB于P,过点O作OH⊥AB于H,交BQ于E,请探究线段EH,PH与OH之间有何数量关系?并证明你的结论.
试题篮