试题 试卷
题型:证明题 题类:常考题 难易度:普通
(1)求证:无论k取任何实数,方程总有实数根;
(2)若等腰△ABC的一边a=3,另两边长b、c恰好是这个方程的两个根,求△ABC的周长
已知:在△ABC中,∠C≠90°,设AB=c,AC=b,BC=a.求证:a2+b2≠c2 .
证明:假设a2+b2=c2 , 则由勾股定理逆定理可知∠C=90°,这与已知中的∠C≠90°矛盾,故假设不成立,所以a2+b2≠c2 .
请用类似的方法证明以下问题:
已知:关于x的一元二次方程x2﹣(m+1)x+2m-3=0 有两个实根x1和x2 .
求证:x1≠x2 .
试题篮