试题 试卷
题型:解答题 题类:模拟题 难易度:困难
已知抛物线y=x2+2(m+1)x+4m,它与x轴分别交于原点O左侧的点A(x1 , 0)和右侧的点B(x2 , 0).
(1)求m的取值范围;
(2)当|x1|+|x2|=3时,求这条抛物线的解析式;
(3)设P是(2)中抛物线位于顶点M右侧上的一个动点(含顶点M),Q为x轴上的另一个动点,连结PA、PQ,当△PAQ是以P为直角顶点的等腰直角三角形时,求P点的坐标.
如图,两条抛物线y1=-x2+1,y2=−x2−1与分别经过点(-2,0),(2,0)且平行于y轴的两条平行线围成的阴影部分的面积为( )
如图,在平面直角坐标系中,抛物线与x轴交于A、D两点,与y轴交于点B,四边形OBCD是矩形,点A的坐标为(1,0),点D的坐标为(﹣3,0),点B的坐标为(0,4),已知点E(m,0)是线段DO上的动点,过点E作PE⊥x轴交抛物线于点P,交BC于点G,交BD于点H.
试题篮