试题 试卷
题型:解答题 题类:常考题 难易度:普通
已知:如图,直线y=-x+4与x轴相交于点A,与直线y=x相交于点P(2,2).(1)请判断的形状并说明理由.(2)动点E从原点O出发,以每秒1个单位的速度沿着O→P→A的路线向点A匀速运动(E不与点O、A重合),过点E分别作EF⊥x轴于F,EB⊥y轴于B.设运动t秒时,矩形EBOF与△OPA重叠部分的面积为S.求:① S与t之间的函数关系式.② 当t为何值时,S最大,并求S的最大值
收藏 纠错
组卷次数:119次 +选题
如图,等边△ABC的边长为3,P为BC上一点,且BP=1,D为AC上一点,若∠APD=60°,则CD的长为( )
先让我们一起来学习方程m2+1= 的解法:
解:令m2=a,则a+1= ,方程两边平方可得,(a+1)2=a+3
解得a1=1,a2=﹣2,∵m2≥0∴m2=1∴m=±1
点评:类似的方程可以用“整体换元”的思想解决.
不妨一试:
如图1,在平面直角坐标系xOy中,抛物线y=ax2+1经过点A(4,﹣3),顶点为点B,点P为抛物线上的一个动点,l是过点(0,2)且垂直于y轴的直线,过P作PH⊥l,垂足为H,连接PO.
试题篮