试题 试卷
题型:填空题 题类:常考题 难易度:普通
如图,梯形ABCD中,AD∥BC,EF是中位线,M是AD上一点,若=4,则梯形ABCD的面积为 .
如图四边形ABCD,AD∥BC,AB⊥BC,AD=1,AB=2,BC=3,P为AB边上的一动点,以PD,PC为边作平行四边形PCQD,则对角线PQ的长的最小值是( )
如图,梯形ABCD中,AD∥BC、点E、F分别为两腰AB、CD的中点.
猜想:EF={#blank#}1{#/blank#}.
问题探究:
【1】新知学习
⑴梯形的中位线:连接梯形两腰中点的线段叫做梯形的中位线.
⑵梯形的中位线性质:梯形的中位线平行于两底,并且等于两底和的一半.
⑶形如分式 (m为常数,且m>0),若x>0,则 ,并且有下列结论:
当x 逐渐增大时,分母x+2m逐渐增大,分式 的值逐渐减少并趋于0,但仍大于0.当x 逐渐减少时,分母x+2m逐渐减少,分式 的值逐渐增大并趋于 ,即趋于 ,但仍小于 .
【2】问题解决
如图2,已知在梯形ABCD中,AD∥BC,AD<BC,E、F分别是AB、CD的中点.
试题篮