“构造图形解题”,它的应用十分广泛,特别是有些技巧性很强的题目,如果不能发现题目中所隐含的几何意义,而用通常的代数方法去思考,经常让我们手足无措,难以下手,这时,如果能转换思维,发现题目中隐含的几何条件,通过构造适合的几何图形,将会得到事半功倍的效果,下面介绍两则实例:
实例一:1876年,美国总统伽非尔德利用实例一图证明了勾股定理:由S四边形ABCD=S△ABC+S△ADE+S△ABE得: (a+b)2=2× ab+ c2 , 化简得:a2+b2=c2.
实例二:欧几里得的《几何原本》记载,关于x的方程x2+ax=b2的图解法是:画Rt△ABC,使∠ACB=90°,BC= ,AC=|b|,再在斜边AB上截取BD= ,则AD的长就是该方程的一个正根(如实例二图).
请根据以上阅读材料回答下面的问题: