题型:解答题 题类:模拟题 难易度:普通
2017年新疆乌鲁木齐市高考数学二诊试卷(理科)
销售量(件) | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
周数 | 2 | 4 | 8 | 13 | 13 | 8 | 4 |
以去年每周的销售量的频率为今年每周市场需求量的概率.
(Ⅰ)根据已知条件完成下面的列联表,并据此资料你是否有 的把握认为“围棋迷”与性别有关?
非围棋迷 | 围棋迷 | 合计 | |
男 | |||
女 | 10 | 55 | |
合计 |
(Ⅱ)将上述调查所得到的频率视为概率,现在从该地区大量学生中,采用随机抽样方法每次抽取1名学生,抽取3次,记被抽取的3名淡定生中的“围棋迷”人数为 。若每次抽取的结果是相互独立的,求 的分布列,期望 和方差 .
附: ,其中 .
0.05 | 0.01 | |
3.841 | 6.635 |
年份 |
2011 |
2012 |
2013 |
2014 |
2015 |
2016 |
2017 |
2018 |
年生产台数(万台) |
2 |
3 |
4 |
5 |
6 |
7 |
10 |
11 |
该产品的年利润(百万元) |
2.1 |
2.75 |
3.5 |
3.25 |
3 |
4.9 |
6 |
6.5 |
年返修台数(台) |
21 |
22 |
28 |
65 |
80 |
65 |
84 |
88 |
部分计算结果: , , , , |
注:
(Ⅰ)从该公司2011-2018年的相关数据中任意选取3年的数据,以 表示3年中生产部门获得考核优秀的次数,求 的分布列和数学期望;
(Ⅱ)根据散点图发现2015年数据偏差较大,如果去掉该年的数据,试用剩下的数据求出年利润 (百万元)关于年生产台数 (万台)的线性回归方程(精确到0.01).
附:线性回归方程 中, , .
试题篮