试题 试卷
题型:填空题 题类:常考题 难易度:普通
2018-2019学年数学浙教版九年级上册4.5 相似三角形的性质及其应用(2) 同步练习
已知,正方形ABCD,点P在对角线BD上,连接AP、CP(如图①) (1)求证:AP=CP. (2)将一直角三角板的直角顶点置于点P处并绕点P旋转,设两直角边分别交DC、BC于E、F, a.若旋转到图②位置,使PE与PA在一直线上,求证:PF=PA. b.若旋转到图③位置且PD∶PB=2∶3,求PE∶PF的值.
已知:四边形ABCD中,AD∥BC,AD=AB=CD,∠BAD=120°,点E是射线CD上的一个动点(与C、D不重合),将△ADE绕点A顺时针旋转120°后,得到△ABE',连接EE'. (1)如图1,∠AEE'= °; (2)如图2,如果将直线AE绕点A顺时针旋转30°后交直线BC于点F,过点E作EM∥AD交直线AF于点M,写出线段DE、BF、ME之间的数量关系; (3)如图3,在(2)的条件下,如果CE=2,AE= , 求ME的长.
【结论运用】如图2,正方形ABCD的边长为6,点O是对角线AC、BD的交点,点E在CD上,过点C作CF⊥BE,垂足为F,连接OF,
(1)试利用射影定理证明△BOF∽△BED;
(2)若DE=2CE,求OF的长.
求证:
试题篮