试题 试卷
题型:单选题 题类:常考题 难易度:普通
如图所示,正方形ABCD的对角线相交于点O,点E是BC上任意一点,EG⊥BD于G,EF⊥AC于F,若AC=10,则EG+EF的值为( )
(1)证明:PC=PE;
(2)求∠CPE的度数;
(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°时,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.
一组正方形按如图所示的方式放置,其中顶点B1在y轴上,顶点C1 , E1 , E2 , C2 , E3 , E4 , C3……在x轴上,已知正方形A1B1C1D1的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3……则正方形A2017B2017C2017D2017的边长是{#blank#}1{#/blank#};
(感知)如图①,过点A作AF⊥BE交BC于点F.易证△ABF≌△BCE.(不需要证明)
(探究)如图②,取BE的中点M,过点M作FG⊥BE交BC于点F,交AD于点G.
试题篮