【提出问题】在本学期的学习中,我们已经知道了三角形全等的判定方法
和直角三角形全等的判定方法
, 数学兴趣小组组长小唐带领小组成员继续对“两边分别相等且其中一组等边的对角相等的两个三角形
”的情形进行探究.
【探索研究】成员小凡根据三角形的分类提出以下探索路径:
已知:在
和
中,
,
,
.
(1)如图①,当
时,可知
, 判定全等的方法是____.

(2)如图②,当
时,请用直尺和圆规作出
, 通过作图,可知
与
_________全等.(填“一定”或“不一定”)

(3)如图③,当
时,
与
是否全等?若全等,请加以证明;若不全等,请举出反例.

【归纳总结】成员悦悦对以上探索进行总结:
(4)如果两个三角形的两边分别相等且其中一组等边的对角相等,那么当这组对角是_____时,这两个三角形一定全等.(填序号)
①锐角;②直角;③钝角.
【结论应用】智多星小崔根据以上探究结果,提出以下问题:
(5)如图④,
为等边三角形(
,
),
是外角
的平分线,点E在边
上,点F在
上,且
, 求
的度数.
