试题 试卷
题型:单选题 题类:常考题 难易度:普通
如图,在正方形ABCD中,AB=1,E , F分别是边BC , CD上的点,连接EF、AE、AF , 过A作AH⊥EF于点H. 若EF=BE+DF,那么下列结论:①AE平分;②FH=FD;③∠EAF=45°;④;⑤△CEF的周长为2.其中正确结论的个数是
①分别以A,C为圆心,大于 AC的长为半径画弧,两弧交于P,Q两点;
②作直线PQ,分别交AB,AC于点E,D,连接CE;
③过C作CF∥AB交PQ于点F,连接AF.
“如图,ABCD是正方形,点E在BC上,DF⊥AE于F,请问图中是否存在一组全等三角形?”
小杰同学经过思考发现:△ADF≌△EAB.
理由如下:因为ABCD是正方形(已知)
所以∠B=90°且AD=AB和AD∥BC
又因为DF⊥AE(已知)
即∠DFA=90°(垂直的意义)
所以∠DFA=∠B(等量代换)
又AD∥BC
所以∠1=∠2(两直线平行,内错角相等)
在△ADF和△EAB中
所以△ADF≌△EAB(AAS)
小胖却说这题是错误的,这两个三角形根本不全等.
你知道小杰的错误原因是什么吗?我们再添加一条线段,就能找到与△ADF全等的三角形,请能说出此线段的做法吗?并说明理由.
试题篮