试题
试题
试卷
登录
注册
当前位置:
首页
题型:解答题
题类:常考题
难易度:普通
课时分层训练(八)等比数列的概念(第2课时)【xm】
设数列{a
n
}的前n项和为S
n
, 已知a
1
=1,S
n+1
=4a
n
+2,且b
n
=a
n+1
-2a
n
.
(1)、
求证:数列{b
n
}是等比数列;
(2)、
求数列{a
n
}的通项公式.
举一反三
设等比数列
的公比为
q
, 前n项和为
, 若
,
,
成等差数列,则公比q为( ).
在数列{a
n
}中,a
n
=1﹣
+
﹣
+…+
﹣
,则a
k
+
1
=( )
已知数列
为等差数列,其前
项和为
, 若
,
.
在
中,角
,
,
的对边分别是
,
,
,且满足
.
已知数列{a
n
}是公差为2的等差数列,且
成等比数列,则
为( )
已知λ,μ为常数,且为正整数,λ≠1,无穷数列{a
n
}的各项均为正整数,其前n项和为S
n
, 对任意的正整数n,S
n
=λa
n
﹣μ.记数列{a
n
}中任意两不同项的和构成的集合为A.
返回首页
相关试卷
2025高考一轮复习(人教A版)第十六讲 三角函数的应用
2025高考一轮复习(人教A版)第五十三讲 列联表与独立性检验
2025高考一轮复习(人教A版)第五十二讲 一元线性回归模型及其应用
2025高考一轮复习(人教A版)第五十一讲 成对数据的相关关系
2025高考一轮复习(人教A版)第五十讲 正态分布
试题篮
编辑
生成试卷
取消
登录
x
请输入网站账号/手机号码/邮箱
请输入密码
自动登录
忘记密码
登录
其它登录方式:
免费注册