综合与实践如图1,某兴趣小组计划开垦一个面积为
的矩形地块
种植农作物,地块一边靠墙,另外三边用木栏围住,木栏总长为
.
![](http://tikupic.21cnjy.com/ct20241o/4a/c8/4ac8f887aa98e7a425f3495e0f18e679.png)
【问题提出】
小组同学提出这样一个问题:若
, 能否围出矩形地块?
【问题探究】
小颖尝试从“函数图象”的角度解决这个问题:
设
为
,
为
. 由矩形地块面积为
, 得到
, 满足条件的
可看成是反比例函数
的图象在第一象限内点的坐标;木栏总长为
, 得到
, 满足条件的
可看成一次函数
的图象在第一象限内点的坐标,同时满足这两个条件的
就可以看成两个函数图象交点的坐标.
如图2,反比例函数
的图象与直线
:
的交点坐标为
和_________,因此,木栏总长为
时,能围出矩形地块,分别为:
,
;或
___________m,
__________m.
![](http://tikupic.21cnjy.com/ct20241o/d7/07/d7070c97703506a786963f5575c836ee.png)
(1)根据小颖的分析思路,完成上面的填空.
【类比探究】
(2)若
, 能否围出矩形地块?请仿照小颖的方法,在图2中画出一次函数图象并说明理由.
【问题延伸】
当木栏总长为
时,小颖建立了一次函数
. 发现直线
可以看成是直线
通过平移得到的,在平移过程中,当过点
时,直线
与反比例函数
的图象有唯一交点.
(3)请在图2中画出直线
过点
时的图象,并求出
的值.
【拓展应用】
小颖从以上探究中发现“能否围成矩形地块问题”可以转化为“
与
图象在第一象限内交点的存在问题”.
(4)若要围出满足条件的矩形地块,且
和
的长均不小于
, 请直接写出
的取值范围.