试题 试卷
题型:填空题 题类:常考题 难易度:普通
抛物线与x轴的交点++++++++3
①2a+b=0;
②b2﹣4ac<0;
③一元二次方程ax2+bx+c=0(a≠0)的另一个解是x=﹣1;
④点(x1 , y1),(x2 , y2)在抛物线上,若x1<0<x2 , 则y1<y2 .
其中正确的结论是(把所有正确结论的序号都填在横线上)
在平面直角坐标系中,已知A、B是抛物线y=ax2(a>0)上两个不同的点,其中A在第二象限,B在第一象限,
已知二次函数y=ax2+bx=c(a≠0)的图象如图所示,与y轴相交一点C,与x轴负半轴相交一点A,且OA=OC,有下列5个结论:
①abc>0;②b<a+c;③4a+2b+c>0;④2a+b=0;⑤c+=﹣2.
其中正确的结论有 ( )
如图,抛物线y=-x2-2x+3与x轴交于A、B两点(A在B的左侧),与y轴交于点C.点D(m,0)为线段OA上一个动点(与点A,O不重合),过点D作x轴的垂线与线段AC交于点P,与抛物线交于点Q,连接BP,与y轴交于点E.
试题篮