试题 试卷
题型:证明题 题类:常考题 难易度:普通
梯形ABCD中,AD∥BC,E、F分别是AB、CD的中点,连接AF并延长并BC延长线于点G.
求证:EF∥AD∥BC,EF=(AD+BC).
如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作正三角形ABC和正三角形CDE,AD与BE交与点O,AD与BC交与点P,BE与CD交与点Q,连接PQ.有下列结论:①AD=BE ②AP=BQ ③ ∠AOB=60° ④DE=DP 其中正确的结论有
问题情境:四边形ABCD中,点O是对角线AC的中点,点E是直线AC上的一个动点(点E与点C,O,A都不重合),过点A,C分别作直线BE的垂线,垂足分别为F,G,连接OF,OG.
试题篮