试题 试卷
题型:综合题 题类:模拟题 难易度:普通
2016年湖北省孝感市安陆市中考数学模拟试卷(3月份)
抛物线y=ax2+bx+c(a≠0)与x轴交于A(2,0),B(4,0)两点,与y轴交于点C(0,2).
①过点E作x轴的平行线,与BC相交于点D(如图所示),当t为何值时, 的值最小,求出这个最小值并写出此时点E、P的坐标;
②在满足①的条件下,抛物线的对称轴上是否存在点F,使△EFP为直角三角形?若存在,请直接写出点F的坐标;若不存在,请说明理由.
如图,抛物线y=﹣x2+bx+c交x轴于点A,交y轴于点B,已知经过点A,B的直线的表达式为y=x+3.
(1)求抛物线的函数表达式及其顶点C的坐标;
(2)如图①,点P(m,0)是线段AO上的一个动点,其中﹣3<m<0,作直线DP⊥x轴,交直线AB于D,交抛物线于E,作EF∥x轴,交直线AB于点F,四边形DEFG为矩形.设矩形DEFG的周长为L,写出L与m的函数关系式,并求m为何值时周长L最大;
(3)如图②,在抛物线的对称轴上是否存在点Q,使点A,B,Q构成的三角形是以AB为腰的等腰三角形?若存在,直接写出所有符合条件的点Q的坐标;若不存在,请说明理由.
试题篮