试题 试卷
题型:单选题 题类:常考题 难易度:普通
解方程:|x+3|=2.
解:当x+3≥0时,原方程可化成为x+3=2
解得x=﹣1,经检验x=﹣1是方程的解;
当x+3<0,原方程可化为,﹣(x+3)=2
解得x=﹣5,经检验x=﹣5是方程的解.
所以原方程的解是x=﹣1,x=﹣5.
解答下面的两个问题:
(1)解方程:|3x﹣2|﹣4=0;
(2)探究:当值a为何值时,方程|x﹣2|=a,
①无解;②只有一个解;③有两个解.
①解方程|x|=2,容易看出,在数轴上与原点距离为2的点对应的数为±2,即该方程的解为x=±2.
②在方程|x﹣1|=2中,x的值就是数轴上到1的距离为2的点对应的数,显然x=3或x=﹣1.
③在方程|x﹣1|+|x+2|=5中,显然该方程表示数轴上与1和﹣2的距离之和为5 的点对应的x值,在数轴上1和﹣2的距离为3,满足方程的x的对应点在1的右边或﹣2的左边.若x的对应点在1的右边,由图示可知,x=2;同理,若x的对应点在﹣2的左边,可得x=﹣3,所以原方程的解是x=2或x=﹣3.根据上面的阅读材料,解答下列问题:
请你参考小兰的发现,解决下面的问题.
在数轴上,点A,B,C分别表示数a,b,c
给出如下定义:若 , 则称点B为点A,C的双倍绝对点.
试题篮