试题 试卷
题型:填空题 题类:常考题 难易度:普通
在RtABC中,∠C=90°,AC=BC=(如图),若将△ABC绕点A顺时针方向旋转60°到△AB′C′的位置,联结C′B,则C′B的长为
如图1,已知二次函数y=ax2+bx+c(a、b、c为常数,a≠0)的图象过点O(0,0)和点A(4,0),函数图象最低点M的纵坐标为﹣ ,直线l的解析式为y=x.
求:
如图,抛物线交x轴于 , 两点,与y轴交于点C,连接 . 点M为线段上的一个动点,过点M作轴,交抛物线于点P,交于点Q.
(1)求抛物线的解析式;
【构建联系】
(2)过点P作 , 垂足为点N,设M点的坐标为 ,
①请用含m的代数式表示线段的长;
②连接求出当m为何值时,四边形的面积有最大值,最大值是多少?
【深入探究】
(3)若点G是对称轴上一动点,将线段绕点G顺时针旋转 , 当点A的对应点为刚好落在抛物线上时,求出点G的坐标.
试题篮