试题 试卷
题型:单选题 题类:常考题 难易度:普通
广西壮族自治区贺州市昭平县2020届九年级上学期数学期末考试试卷
如图,梯形ABCD中,AB∥CD,AB=14,AD= 4 , CD=7.直线l经过A,D两点,且sin∠DAB= . 动点P在线段AB上从点A出发以每秒2个单位的速度向点B运动,同时动点Q从点B出发以每秒5个单位的速度沿B→C→D的方向向点D运动,过点P作PM垂直于AB,与折线A→D→C相交于点M,当P,Q两点中有一点到达终点时,另一点也随之停止运动.设点P,Q运动的时间为t秒(t>0),△MPQ的面积为S.(1)求腰BC的长;(2)当Q在BC上运动时,求S与t的函数关系式;(3)在(2)的条件下,是否存在某一时刻t,使得△MPQ的面积S是梯形ABCD面积的?若存在,请求出t的值;若不存在,请说明理由;(4)随着P,Q两点的运动,当点M在线段DC上运动时,设PM的延长线与直线l相交于点N,试探究:当t为何值时,△QMN为等腰三角形?
如图,点P是正方形ABCD对角线AC上一动点,点E在射线BC上,且PB=PE,连接PD,O为AC中点.
(1)如图1,当点P在线段AO上时,试猜想PE与PD的数量关系和位置关系,不用说明理由;
(2)如图2,当点P在线段OC上时,(1)中的猜想还成立吗?请说明理由;
(3)如图3,当点P在AC的延长线上时,请你在图3中画出相应的图形(尺规作图,保留作图痕迹,不写作法),并判断(1)中的猜想是否成立?若成立,请直接写出结论;若不成立,请说明理由.
如图,正方形CDEF内接于Rt△ABC,点D、E、F分别在边AC、AB和BC上,当AD=2,BF=3时,正方形CDEF的面积是{#blank#}1{#/blank#} .
试题篮