试题 试卷
题型:综合题 题类:真题 难易度:困难
四川省广元市2019年中考数学试卷
根据下表中的二次函数y=ax2+bx+c的自变量x与函数y的对应值,可判断该二次函数的图象与x轴
如图,在平面直角坐标系中,已知点A、B、C的坐标分别为(-1,0),(5,0),(0,2)(1)求过A、B、C三点的抛物线解析式.(2)若点P从A点出发,沿x轴正方向以每秒1个单位长度的速度向B点移动,连接PC并延长到点E,使CE=PC,将线段PE绕点P顺时针旋转90°得到线段PF,连接FB.若点P运动的时间为t秒,(0≤t≤6)设△PBF的面积为S.①求S与t的函数关系式.②当t是多少时,△PBF的面积最大,最大面积是多少?(3)点P在移动的过程中,△PBF能否成为直角三角形?若能,直接写出点F的坐标;若不能,请说明理由.
如图,在直角坐标系中,点P的坐标是(n,0)(n>0),抛物线y=﹣x2+bx+c经过原点O和点P,已知正方形ABCD的三个顶点为A(2,2),B(3,2),D(2,3).
(参考公式:y=ax2+bx+c(a≠0)的顶点坐标是(﹣ , ).
表1
制动时车速()
制动时间()
表2
制动距离()
为观察与之间的关系,建立平面直角坐标系,以为横坐标,为纵坐标,描出表中数据对应的点,并用平滑曲线连接(如图),可以看出,这条曲线像是抛物线的一部分,于是,我们用二次函数来近似地表示与的关系.
根据以上数据与函数图象,解决下列问题:
试题篮