2015-2016学年北京市房山区九年级上学期期末数学试卷

修改时间:2024-07-12 浏览次数:666 类型:期末考试 编辑

选择试卷全部试题 *点击此按钮,可全选试卷全部试题,进行试卷编辑

一、选择题

  • 1. ﹣3的倒数是(  )

    A . ﹣3 B . 3 C . D .
  • 2. 已知⊙O的半径是4,OP=3,则点P与⊙O的位置关系是(  )

    A . 点P在圆上 B . 点P在圆内 C . 点P在圆外 D . 不能确定
  • 3. 抛物线y=2(x﹣1)2+3的顶点坐标为(  )


    A . (2,1) B . (2,﹣1) C . (﹣1,3) D . (1,3)
  • 4. 若3a=2b,则 的值为(  )

    A . - B . C . - D .
  • 5.

    ,则(﹣xy)2的值为(  )

    A . ﹣6 B . 9 C . 6 D . ﹣9
  • 6. 将抛物线y=5x2先向左平移2个单位,再向上平移3个单位后得到新的抛物线,则新抛物线的表达式是(  )


    A . y=5(x+2)2+3 B . y=5(x﹣2)2+3 C . y=5(x﹣2)2﹣3 D . y=5(x+2)2﹣3
  • 7.

    如图所示,已知AB∥CD,EF平分∠CEG,∠1=80°,则∠2的度数为(  )

    A . 20° B . 40° C . 50° D . 60°
  • 8. 如图,AB是⊙O的直径,C、D是⊙O上两点,CD⊥AB,若∠DAB=65°,则∠AOC等于(  )

    A . 25° B . 30° C . 50° D . 65°
  • 9.

    如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上,则tan∠ABC的值为(  )

    A . 1 B . C . D .
  • 10. 如图,点C是以点O为圆心,AB为直径的半圆上的动点(点C不与点A,B重合),AB=4.设弦AC的长为x,△ABC的面积为y,则下列图象中,能表示y与x的函数关系的图象大致是(   )

    A . B . C . D .

二、填空题

三、解答题

  • 17. 计算: +2sin60°﹣|﹣ |﹣(﹣2015)0
  • 18. 求不等式组 的整数解.

  • 19.

    如图,在△ABC中,D为AC边上一点,∠DBC=∠A.

    (1) 求证:△BCD∽△ACB;

    (2) 如果BC= ,AC=3,求CD的长.

  • 20. 在一个不透明的箱子里,装有黄、白、黑各一个球,它们除了颜色之外没有其他区别.
    (1) 随机从箱子里取出1个球,则取出黄球的概率是多少?
    (2) 随机从箱子里取出1个球,放回搅匀再取第二个球,请你用画树状图或列表的方法表示出所有可能出现的结果,并求两次取出的都是白色球的概率.
  • 21. 下表给出了代数式﹣x2+bx+c与x的一些对应值:

    x

    ﹣2

    ﹣1

    0

    1

    2

    3

    ﹣x2+bx+c

    5

    n

    c

    2

    ﹣3

    ﹣10

    (1) 根据表格中的数据,确定b,c,n的值;
    (2) 设y=﹣x2+bx+c,直接写出0≤x≤2时y的最大值.
  • 22.

    如图,△ABC中,∠B=60°,∠C=75°,AC=3 ,求AB的长.

  • 23. 如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC(顶点是网格线的交点).

    (1) 将△ABC绕点B顺时针旋转90°得到△A′BC′,请画出△A′BC′,并求BA边旋转到BA′位置时所扫过图形的面积;
    (2) 请在网格中画出一个△A″B″C″,使△A″B″C″∽△ABC,且相似比不为1.
  • 24. 如果关于x的函数y=ax2+(a+2)x+a+1的图象与x轴只有一个公共点,求实数a的值.

  • 25. 如图,已知A(n,﹣2),B(1,4)是一次函数y=kx+b的图象和反比例函数y= 的图象的两个交点,直线AB与y轴交于点C.

    (1) 求反比例函数和一次函数的关系式;
    (2) 求△AOC的面积;
    (3) 求不等式kx+b﹣ <0的解集.(直接写出答案)
  • 26. 如图,在平面直角坐标系xOy中,⊙P与y轴相切于点C,⊙P的半径是4,直线y=x被⊙P截得的弦AB的长为4 ,求点P的坐标.

  • 27. 已知关于x的一元二次方程x2+2x+ =0有实数根,k为正整数.

    (1) 求k的值;

    (2) 当此方程有两个非零的整数根时,将关于x的二次函数y=x2+2x+ 的图象向下平移9个单位,求平移后的图象的表达式;

    (3) 在(2)的条件下,平移后的二次函数的图象与x轴交于点A,B(点A在点B左侧),直线y=kx+b(k>0)过点B,且与抛物线的另一个交点为C,直线BC上方的抛物线与线段BC组成新的图象,当此新图象的最小值大于﹣5时,求k的取值范围.

  • 28.

    在矩形ABCD中,边AD=8,将矩形ABCD折叠,使得点B落在CD边上的点P处(如图1).

    (1) 如图2,设折痕与边BC交于点O,连接,OP、OA.已知△OCP与△PDA的面积比为1:4,求边AB的长;

    (2) 动点M在线段AP上(不与点P、A重合),动点N在线段AB的延长线上,且BN=PM,连接MN、CA,交于点F,过点M作ME⊥BP于点E.

    ①在图1中画出图形;

    ②在△OCP与△PDA的面积比为1:4不变的情况下,试问动点M、N在移动的过程中,线段EF的长度是否发生变化?请你说明理由.

  • 29.

    如图1,在平面直角坐标系中,O为坐标原点.直线y=kx+b与抛物线y=mx2 x+n同时经过A(0,3)、B(4,0).

    (1) 求m,n的值.

    (2) 点M是二次函数图象上一点,(点M在AB下方),过M作MN⊥x轴,与AB交于点N,与x轴交于点Q.求MN的最大值.

    (3) 在(2)的条件下,是否存在点N,使△AOB和△NOQ相似?若存在,求出N点坐标,不存在,说明理由.

试题篮