浙江省嵊州市2018-2019学年八年级下学期数学期末考试试卷

修改时间:2024-07-13 浏览次数:823 类型:期末考试 编辑

选择试卷全部试题 *点击此按钮,可全选试卷全部试题,进行试卷编辑

一、选择题(每小题2分,共20分)

  • 1. 计算 的结果是( )
    A . 2 B . -2 C . 2或-2 D . 4
  • 2. 在下列四个新能源汽车车标的设计图中,属于中心对称图形的是(   )
    A . B . C . D .
  • 3. 下列各式中计算正确的是( )
    A . B . =3+2=5 C . =2+3=5 D .
  • 4. 下列一元二次方程没有实数根的是( )
    A . x2+2x+1=0 B . x2+x+2=0 C . x2-1=0 D . x2-2x-1=0
  • 5. 某种植基地2016年蔬菜产量为80吨,2018年蔬菜产量达到100吨,求蔬菜产量的年平均增长率.设蔬菜产量的年平均增长率为x,则可列方程为( )
    A . 80(1+x)2=100 B . 100(1-x)2=80 C . 80(1+2x)=100 D . 80(1+x2)=100
  • 6. 为考察甲、乙、丙、丁四种小麦的长势,在同一时期分别从中随机抽取部分麦苗,获得苗高(单位:cm)的平均数与方差为: =13, =15; =3.6; =6.3.则麦苗又高又整齐的是( )
    A . B . C . D .
  • 7. 如图,在▱ABCD中,对角线AC与BD相交于点O,E是边CD的中点,连结OE.若∠ABC=60°,∠BAC=80°,则∠1的度数为( )

    A . 50° B . 40° C . 30° D . 20°
  • 8. 下图入口处进入,最后到达的是( )

    A . B . C . D .
  • 9. 如图,四边形ABCD中,AC⊥BC,AD∥BC,BC=3,AC=4,AD=6,E是BD的中点,则CE的长为( )

    A . B . 2 C . D . 3
  • 10. 如图,在平面直角坐标系中,A是反比例函数y= (x>0)图象上一点,B是y轴正半轴上一点,以OA,AB为邻边作▱ABCO,若点C及BC中点D都在反比例函数,y= (k<0,x<0)图象上,则k的值为( )

    A . -2 B . -3 C . -4 D . -6

二、填空题(每小题3分,共30分)

  • 11. 二次根式 中字母x的取值范围是
  • 12. 一个多边形的每个外角都是18°,则这个多边形的边数是  。
  • 13. 已知,反比例函数y= 的图象在第二、四象限内,则k的值可以是 。(写出一个满足条件的k的值即可)
  • 14. 若关于x的一元二次方程x2+mx+2m-4=0有一个根为x=-1,则m= 。
  • 15. 用反证法证明“若|a|>2,则a2>4”时,应假设
  • 16. 如图,E是直线CD上的一点.已知▱ABCD的面积为52cm2 , 则△ABE的面积为cm2

  • 17. 已知蓄电池的电压为定值,使用蓄电池时,电流I(单位:A)与电阻R(单位: Ω)是反比例函数关系,它的图象如图所示,如果以此蓄电池为电源的用电器,其限制电流不能超过10A,那么用电器可变电阻R应控制的范围是

  • 18. 某校规定:学生的数学期末总评成绩由卷面成绩、研究性学习成绩、平时成绩三部分构成,各部分所占比例如图所示,小明本学期数学学科的卷面成绩、研究性学习成绩、平时成绩得分依次为90分、80分、85分,则小明的数学期末总评成绩为分。

  • 19. 如图1,有一张菱形纸片ABCD,BC=6,∠ABC=120°.先将其沿较短的对角线BD剪开,固定△DBC,并把△ABD沿着BC方向平移,得到△A'B'D'(点B'在边BC上),如图2.当两个三角形重叠部分的面积为4 时,它移动的距离BB'等于

  • 20. 在矩形ABCD中,AB=3,对角线AC,BD相交于点O,将矩形折叠,使得对角线的两个端点B,D重合,折痕所在直线分别交直线AB,直线CD于点E,F.若△OCF是等腰角形,则BC的长度为 。

三、解答题(第21-25题每小题8分)

  • 21. 计算:
    (1) ( -1)×( +1)
    (2)
  • 22. 解方程:
    (1) x2-x=0
    (2) x2+6x-16=0
  • 23. 在学校组织的“学习强国”知识竞赛中,每班参加比赛的人数相同,成绩分为A,B,C,D四个等级,其中相应等级的得分依次记为100分,90分,80分和70分.年级组长张老师将801班和802班的成绩进行整理并绘制成如下的统计图:

    (1) 在本次竞赛中,802班C级的人数有多少。
    (2) 请你将下面的表格补充完整:

    成绩/班级

    平均数(分)

    中位数(分)

    众数(分)

    B级及以上人数

    801班

    87.6

    90

    18

    802班

    87.6

    100

    (3) 结合以上统计量,请你从不同角度对这次竞赛成绩的结果进行分析(写出两条)。
  • 24. 如图,四边形ABCD的对角线AC,BD交于点O,E、F是AC上两点,AE=CF, DF∥BE,DF=BE。

    (1) 求证:四边形ABCD是平行四边形。
    (2) 当AC平分∠BAD时,求证:AC⊥BD。
  • 25. 如图,已知点A(2,m)是反比例函数y=  (k>0,x>0)的图象上一点,过点A作AB⊥x轴于点B,连结OA,△ABO的面积为4.

    (1) 求k和m的值
    (2) 直线y= x+n(n<0)与AB的延长线交于点C,与反比例函数图象交于点E。

    ①若n=-2,求点C坐标

    ②若点E到直线AB的距离等于AC,求n的值。

  • 26. 如图,以矩形OABC的顶点O为坐标原点,OA所在直线为x轴,OC所在直线为y轴,建立平面直角坐标系.已知,OA=2,OC=4,点D为x轴上一动点,以BD为一边在BD右侧作正方形BDEF.

    (1) 若点D与点A重合,请直接写出点E的坐标。
    (2) 若点D在OA的延长线上,且EA=EB,求点E的坐标。
    (3) 若OE=2 ,求点E的坐标。

四、附加题

  • 27. 将抛物线y=x2-4x+3平移,使它平移后图象的顶点为(-2,4),则需将该抛物线( )
    A . 先向右移4个单位,再向上平移5个单位 B . 先向右平移4个单位,再向下平移5个单位 C . 先向左平移4个单位,再向上平移5个单位 D . 先向左平移4个单位,再向下平移5个单位
  • 28. 在平面直角坐标系中,二次函数y=x2+2x-3的图象如图所示,点A(x1 , y1),B(x2 , y2)是该二次函数图象上的两点,其中-3≤x1<x2≤0,则下列结论正确的是( )

    A . y1<y2 B . y1>y2 C . 函数y的最小值是-3 D . 函数y的最小值是-4
  • 29. 如图1,在菱形ABCD中,∠A=120°,点E是BC边的中点,点P是对角线BD上一动点,设PD的长度为x,PE与PC的长度和为y,图2是y关于x的函数图象,其中H是图象上最低点,则a+b的值为( )

    A . 7 B . 4 +6 C . 14 D . 6 +9
  • 30. 如图1,以矩形OABC的顶点O为原点,OA所在直线为x轴,OC所在直线为y轴,建立平面直角坐标系,顶点为点D的抛物线y=-x2+2x+1经过点B,点C。

    (1) 写出抛物线的对称轴及点B的坐标
    (2) 将矩形OABC绕点O顺时针旋转a(0°<a<180°)得到矩形OA'B'C'.

    ①当点B'恰好落在BA的延长线上时,如图2,求点B的坐标

    ②在旋转过程中,直线B'C'与直线OA分别与抛物线的对称轴相交于点M点N.若 MN=DM,求点M的坐标。

试题篮