试题
试题
试卷
登录
注册
当前位置:
首页
题型:解答题
题类:常考题
难易度:普通
广东省肇庆市2019届高三理数第一次统测数学试卷
如图,在四棱锥
,
,底面
是直角梯形,
,
,
是
的中点,
是
上一点,且
.
(1)、
证明:
;
(2)、
若
,
,求三棱锥
的体积.
举一反三
在三棱锥P﹣ABC中,PA⊥平面ABC,△ABC为正三角形,D、E分别为BC、CA的中点,F为CD的中点.若在线段PB上存在一点Q,使得平面ADQ∥平面PEF.
如图,在四棱锥O﹣ABCD中,底面ABCD是边长为1的菱形,∠ABC=
,OA⊥底面ABCD,OA=2,M为OA的中点,N为BC的中点.
如果一个几何体的三视图如图所示(单位长度:cm),则此几何体的表面积是( )
已知四棱锥P﹣ABCD的底面ABCD是平行四边形,△PAB与△ABC是等腰三角形,PA⊥平面ABCD,PA=2,AD=2
,AC⊥BA,点E是线段AB上靠近点B的一个三等分点,点F、G分别在线段PD,PC上.
(Ⅰ)证明:CD⊥AG;
(Ⅱ)若三棱锥E﹣BCF的体积为
,求
的值.
如图,在四棱锥P﹣ABCD中,PD⊥平面ABCD,AD∥BC,CD=13,AB=12,BC=10,AD=5,PD=8,点E,F分别是PB,DC的中点.
如图,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,AB=AD,∠BAD=60°,E,F分别是AP,AD的中点.
求证:
返回首页
相关试卷
2025高考一轮复习(人教A版)第六讲函数的概念及其表示
2024年高考真题分类汇编九 导数在函数中的应用
2024年高考真题分类汇编九 空间向量与立体几何
2024年高考真题分类汇编八 平面解析几何
上海市七宝中学2024-2025学年高三上学期开学考试数学试题
试题篮
编辑
生成试卷
取消
登录
x
请输入网站账号/手机号码/邮箱
请输入密码
自动登录
忘记密码
登录
其它登录方式:
免费注册