题型:单选题 题类:常考题 难易度:普通
线性回归方程+++2
转速x/(rad/s) | 16 | 14 | 12 | 8 |
每小时生产有缺点的零件数y/件 | 11 | 9 | 8 | 5 |
若实际生产中,允许每小时的产品中有缺点的零件数最多为10个,那么机器的转速应该控制所在的范围是( )
单价x(元) | 8 | 8.2 | 8.4 | 8.6 | 8.8 | 9 |
销量y(件) | 90 | 84 | 83 | 80 | 75 | 68 |
根据如表可得线性回归方程=x+ . 其中=﹣20,=﹣b , 那么单价定为8.3元时,可预测销售的件数为
( )
月份 | 9 | 10 | 11 | 12 | 1 |
历史(x分) | 79 | 81 | 83 | 85 | 87 |
政治(y分) | 77 | 79 | 79 | 82 | 83 |
年份200x(年) | 0 | 1 | 2 | 3 | 4 |
人口数y(十)万 | 5 | 7 | 8 | 11 | 19 |
年份 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 |
年份代号t | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
人均纯收入y | 2.9 | 3.3 | 3.6 | 4.4 | 4.8 | 5.2 | 5.9 |
(Ⅰ)求y关于t的线性回归方程;
(Ⅱ)利用(Ⅰ)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入.
附:回归直线的斜率和截距的最小二乘估计公式分别为: = , = ﹣ .
试题篮