试题 试卷
题型:解答题 题类:常考题 难易度:普通
棱柱、棱锥、棱台的体积++++++4
如图在四棱锥P﹣ABCD中,底面ABCD是边长为a的正方形,侧面PAD⊥底面ABCD,且PA=PD=AD,设E、F分别为PC、BD的中点.
(Ⅰ) 求证:EF∥平面PAD;
(Ⅱ) 求证:面PAB⊥平面PDC;
(Ⅲ) 求二面角B﹣PD﹣C的正切值.
如图,四棱锥P﹣ABCD中,底面ABCD为平行四边形.∠DAB=60°,AB=2AD,PD⊥底面ABCD.
(Ⅰ)证明:PA⊥BD
(Ⅱ)设PD=AD=1,求棱锥D﹣PBC的高.
(Ⅰ)在平面PAB内找一点M,使得直线CM∥平面PBE,并说明理由;
(Ⅱ)若二面角P﹣CD﹣A的大小为45°,求直线PA与平面PCE所成角的正弦值.
⑴MN∥平面APC;(2)C1Q∥平面APC;(3)A,P,M三点共线;(4)平面MNQ∥平面APC.正确的序号为( )
试题篮