题型:解答题 题类:常考题 难易度:普通
2015-2016学年江苏省盐城市东台市创新学校高二下学期期中数学试卷(理科)
产假安排(单位:周) | 14 | 15 | 16 | 17 | 18 |
有生育意愿家庭数 | 4 | 8 | 16 | 20 | 26 |
方式 | 实施地点 | 大雨 | 中雨 | 小雨 | 模拟实验总次数 |
A | 甲 | 4次 | 6次 | 2次 | 12次 |
B | 乙 | 3次 | 6次 | 3次 | 12次 |
C | 丙 | 2次 | 2次 | 8次 | 12次 |
假定对甲、乙、丙三地实施的人工降雨彼此互不影响,请你根据人工降雨模拟试验的统计数据
(I)求甲、乙、丙三地都恰为中雨的概率;
(Ⅱ)考虑到旱情和水土流失,如果甲地恰需中雨即达到理想状态,乙地必须是大雨才达到理想状态,丙地只能是小雨或中雨即达到理想状态,记“甲、乙、丙三地中达到理想状态的个数”为随机变量ξ,求随机变量ξ的分布列和数学期望Eξ.
对别 | A | B | C | D |
人数 | 4 | 3 | 2 | 3 |
(Ⅰ)从这12名队员中随机选出两名,求两人来自同一个队的概率;
(Ⅱ)比赛结束后,学校要评选出3名优秀队员(每一个队员等可能被评为优秀队员),设其中来自A队的人数为ξ,求随机变量ξ的分布列和数学期望.
分数 |
|
|
|
|
|
人数 | 25 | 50 | 100 | 50 | 25 |
参加自主招生获得通过的概率 | 0.9 | 0.8 | 0.6 | 0.4 | 0.3 |
(Ⅰ)这两年学校共培养出优等生150人,根据下图等高条形图,填写相应列联表,并根据列联表检验能否在犯错的概率不超过0.01的前提下认为学习先修课程与优等生有关系?
优等生 | 非优等生 | 总计 | |
学习大学先修课程 | 250 | ||
没有学习大学先修课程 | |||
总计 | 150 |
(Ⅱ)已知今年全校有150名学生报名学习大学选项课程,并都参加了高校的自主招生考试,以前两年参加大学先修课程学习成绩的频率作为今年参加大学先修课程学习成绩的概率.
(ⅰ)在今年参与大学先修课程学习的学生中任取一人,求他获得高校自主招生通过的概率;
(ⅱ)某班有4名学生参加了大学先修课程的学习,设获得高校自主招生通过的人数为 ,求 的分布列,试估计今年全校参加大学先修课程学习的学生获得高校自主招生通过的人数.
参考数据:
| 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 |
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
参考公式: ,其中
试题篮