题型:解答题 题类:常考题 难易度:普通
离散型随机变量及其分布列+++++++++
空气质量指数 | ||||||
空气质量等级 | 级优 | 级良 | 级轻度污染 | 级中度污染 | 级重度污染 | 级严重污染 |
该社团将该校区在 年 天的空气质量指数监测数据作为样本,绘制的频率分布直方图如下图,把该直方图所得频率估计为概率.
(Ⅰ)请估算 年(以 天计算)全年空气质量优良的天数(未满一天按一天计算);
(Ⅱ)该校 年 月 、 日将作为高考考场,若这两天中某天出现 级重度污染,需要净化空气费用 元,出现 级严重污染,需要净化空气费用 元,记这两天净化空气总费用为 元,求 的分布列及数学期望.
年份 |
2011 |
2012 |
2013 |
2014 |
2015 |
2016 |
2017 |
2018 |
年生产台数(万台) |
2 |
3 |
4 |
5 |
6 |
7 |
10 |
11 |
该产品的年利润(百万元) |
2.1 |
2.75 |
3.5 |
3.25 |
3 |
4.9 |
6 |
6.5 |
年返修台数(台) |
21 |
22 |
28 |
65 |
80 |
65 |
84 |
88 |
部分计算结果: , , , , |
注:
(Ⅰ)从该公司2011-2018年的相关数据中任意选取3年的数据,以 表示3年中生产部门获得考核优秀的次数,求 的分布列和数学期望;
(Ⅱ)根据散点图发现2015年数据偏差较大,如果去掉该年的数据,试用剩下的数据求出年利润 (百万元)关于年生产台数 (万台)的线性回归方程(精确到0.01).
附:线性回归方程 中, , .
试题篮