试题 试卷
题型:解答题 题类:常考题 难易度:普通
如图,在四面体ABCD中,CB=CD,AD⊥BD,点E,F分别是AB,BD的中点.
求证:
(Ⅰ)直线EF∥平面ACD;
(Ⅱ)平面EFC⊥平面BCD.
如图,在三棱锥P﹣ABC中,∠ABC=90°,PA⊥平面ABC,E,F分别为PB,PC的中点.
(1)求证:EF∥平面ABC;
(2)求证:平面AEF⊥平面PAB.
如图,在三棱锥P﹣ABC中,平面PAB⊥平面ABC,AP⊥BP,AC⊥BC,∠PAB=60°,∠ABC=45°,D是AB中点,E,F分别为PD,PC的中点.
(Ⅰ)求证:AE⊥平面PCD;
(Ⅱ)求二面角B﹣PA﹣C的余弦值;
(Ⅲ)在棱PB上是否存在点M,使得CM∥平面AEF?若存在,求 的值;若不存在,说明理由.
(I)求证:平面SAB⊥平面SAC;
(II)求二面角B﹣SC﹣A的余弦值.
试题篮