试题 试卷
题型:解答题 题类:常考题 难易度:普通
设点M是等腰直角三角形ABC的斜边BA的中点,P是直线BA上任意一点,PE⊥AC于E,PF⊥BC于F,求证:
(1)ME=MF;
(2)ME⊥MF.
在四棱柱ABCD﹣A′B′C′D′中,AA′⊥底面ABCD,四边形ABCD为梯形,AD∥BC且AD=AA′=2BC.过A′,C,D三点的平面与BB′交于点E,F,G分别为CC′,A′D′的中点(如图所示)给出以下判断:
①E为BB′的中点;
②直线A′E和直线FG是异面直线;
③直线FG∥平面A′CD;
④若AD⊥CD,则平面ABF⊥平面A′CD;
⑤几何体EBC﹣A′AD是棱台.
其中正确的结论是{#blank#}1{#/blank#} (将正确的结论的序号全填上)
①若 , ,则 ②若 , ,则
③若 , ,则 ④若 , ,则
试题篮