试题 试卷
题型:解答题 题类:常考题 难易度:普通
如图4,四边形ABCD为菱形,∠ABC=60°.PA⊥平面ABCD,E为PC中点.
(Ⅰ)求证:平面BED⊥平面ABCD;
(Ⅱ)求平面PBA与平面EBD所成二面角(锐角)的余弦值.
(Ⅰ)求四棱锥P﹣ABCD的体积;
(Ⅱ)不论点E在何位置,是否都有BD⊥AE?试证明你的结论;
(Ⅲ)若点E为PC的中点,求二面角D﹣AE﹣B的大小.
(Ⅰ)求证:平面FGH∥平面PDE;
(Ⅱ)求证:平面FGH⊥平面AEB;
(Ⅲ)在线段PC上是否存在一点M,使PB⊥平面EFM?若存在,求出线段PM的长;若不存在,请说明理由.
(Ⅰ)求证:平面ABC⊥平面APC;
(Ⅱ)若BC=1,AB=4,求三棱锥D﹣PCM的体积.
(Ⅰ)求证:平面PAD⊥平面ABCD;
(Ⅱ)若四棱锥P﹣ABCD的体积为2 ,求四面体BCDM的体积.
试题篮