试题 试卷
题型:填空题 题类:常考题 难易度:普通
(Ⅰ)求点N的轨迹C的方程
(Ⅱ)设曲线C上的动点A关于x轴的对称点为A′,点P的坐标为(2,0),直线AP与曲线C的另一个交点为B(B与A′不重合),直线P′H⊥A′B,垂足为H,是否存在一个定点Q,使得|QH|为定值?若存在,求出点Q的坐标;若不存在,请说明理由.
(Ⅰ)当点B的坐标为(1,0)时,求直线AD的斜率;
(Ⅱ)记△OAD的面积为S1 , 梯形ABCD的面积为S2 , 求 的范围.
试题篮